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Abstract

Sometimes complex software systems fail because of faults in-
troduced in the design stage of the development process. De-
sign reviews can remove some of these faults but often a few
remain undiscovered until the software is developed further.
The number of faults not discovered by the design review
can be estimated by using capture-recapture methods. Since
these methods were developed for wildlife population estima-
tion, the assumptions used to derive them don’t match design
review applications. We report on a Monte-Carlo simulation
to study the effects of broken assumptions on maximum like-
lihood estimators (MLEs) and jackknife estimators (JEs) of
faults remaining. We find that the MLE performs satisfacto-
rily if faults are classified into a small number of homogeneous
groups. Without grouping, the MLE can perform poorly but
it generally does better than the JE.

Keywords: software quality assurance, design faults, design
reviews, statistical estimation, Monte-Carlo simulation

1 Software Designs and Capture-
Recapture Models

Many complex systems are controlled by computer software.
Some examples are the systems for placing long distance tele-
phone calls, ticketing airline reservations, and verifying con-
sumer credit. These systems typically function so well that we
are unaware of their complexities. Sometimes, however, they
fail because of software faults. Faults are often introduced
into systems at the design stage of the development process
[5]. Unfortunately, design reviews usually do not remove all
of them. It is important to eliminate these design faults as
quickly as possible because they become much more expen-
sive to fix as a software system proceeds through development
(see [1], pp. 39-41).

To better estimate the number of remaining faults after
design review, we have integrated capture-recapture! methods
into the design process in AT&T’s International Switching
Division. Before a peer review meeting for the design of a

1 Capture-recapture methods were developed for estimating the sizes
of wildlife populations. Good accounts of the theory and practice of
these methods are given in [2] and [8] respectively.

software module, a design document is distributed to several
reviewers who read it and note “issues” that they think should
be resolved before the software feature is developed further.
We refer to these issues as faults. At the review meeting
data is collected showing which reviewers discovered which
faults. This data is then used to estimate the number of
faults that remain undiscovered. These estimates can then
be used in managing the quality at the design stage of the
software development process.

Estimating the number of remaining faults is new to the
design process at AT&T which, at one time, specified both
upper and lower limits on the number of faults found per
page during design review meetings in order for a design to be
acceptable. The intent was to ensure that design reviews were
thorough (hence the lower limit) and that design documents
were of high quality (the upper limit). This practice, however,
encouraged reviewers to find a “passing” number of faults
regardless of the quality of the design document [3].

The ultimate goal is to prevent design faults altogether.
As a first step we concentrate on developing methods to de-
tect designs of questionable quality earlier in the process by
estimating the number of faults that go undetected after a
design review. This is valuable for deciding whether the de-
sign is of high enough quality for the software to be developed
further.

Our approach treats the faults found by reviewers prepar-
ing for a design review as data from a capture-recapture sam-
pling scheme. We use a Monte Carlo simulation to investi-
gate the inaccuracies of the capture-recapture estimators due
to assumption violations when faults have varying detection
probabilities and reviewers have different capture probabil-
ities. Although we would like to use data from real world
design reviews to perform this study, it is impossible. We can
not control the fault detection and reviewer capture probabil-
ities in design reviews, nor, could we ever hope to obtain the
number of reviews required to perform a statistically signifi-
cant study.

Our study shows that maximum likelihood and jackknife
estimators are not robust to assumption violations, but one
can improve the maximum likelihood estimator by analyzing
different types of faults separately. Further work should be
done to determine a reliable classification method.



1.1 Background

Eick et al. [3] describe some preliminary results from us-
ing capture-recapture estimators in AT&T’s International
Switching Division. They present various alternative capture-
recapture estimators and show how to test some of the model
assumptions.

1.2 Overview of the paper

This paper defines a maximum likelihood estimator (MLE)
and a jackknife estimator (JE) of the number of undiscovered
faults fo and compares their behavior in situations where the
usual model assumptions are violated. We chose to compare
these estimators because they are developed from two very
different sets of assumptions neither of which hold in practice.
We wanted to know whether one estimator performed better
than the other under assumptions more realistic to software
development.

The main result is that the MLE can severely misestimate
the remaining number of faults unless, they are classified into
groups. Grouping does not improve the JE. We also rec-
ommend setting upper confidence bounds on the number of
remaining faults using a likelihood ratio method.

This paper is organized as follows. Section 2 introduces
the maximum likelihood and jackknife estimators and dis-
cusses the assumptions used to derive them. Section 3 de-
scribes the simulation and discusses the behavior of the esti-
mators when fault type is ignored as well as when faults are
grouped by type. Section 4 is a more thorough study of the
simulation results. Section 5 summarizes and concludes.

2 Estimators of the Number of
Undiscovered Faults

We compare 2 estimators used by biologists for capture-
recapture studies of wildlife populations; but we use them
to estimate software design faults. The MLE is derived from
assumptions that accommodate different reviewer detection
probabilities for observing a fault, but it treats all faults as
probabilistically identical. The JE is exactly the opposite. It
is intended for situations in which the reviewers are identi-
cal but the faults may have different detection probabilities.
Both techniques have their advantages and disadvantages, as
we will investigate in Section 3. For further details and alter-
native estimators see [7].

We use the following problem description and notation
in the rest of the paper. There is an unknown number, N,
of faults in a design document. In preparation for a review
meeting by ¢ reviewers, n < N of the faults are discovered—
some by more than 1 reviewer. Let n; denote the number
discovered by reviewer j (j = 1,...,t) and let fi denote the
number discovered by exactly k reviewers (k = 0,...,¢). Then
fo is the number of undiscovered faults, n = fi +-- -+ f;, and
N=fo+hHh+ -+ [t

2.1 Maximum likelihood

The MLE used in this paper is based on a probability model
in which the events that reviewer j discovers fault i (i =
1,...,N; 5 = 1,...,t) are independent with probabilities
pij = p; that depend only on the reviewer. We describe this
by saying that all faults are probabilistically independent and
identical. The reviewers act independently but different re-
viewers may have different probabilities for discovering faults.

Under this model the log-likelihood maximized over
pi,-..,p: as a function of fy is

t
L(fo) = ln(f)—}—ZnﬂnW
i=1

t
-I-Z(N —n;)In(N —n;) — NtlnN

ji=1

where N = fo 4+ n. The maximizer fy of L(fo) is the MLE.
See [4] for a derivation and further details. Technically £
should be defined only for nonnegative integers fy. Standard
practice, however, is to replace factorials with gamma func-
tions, do calculations as if fy could be any nonnegative real
and round results to integers when reporting final estimates
and confidence bounds.

2.2 Jackknife

Burnham and Overton [2] developed an estimator of popula-
tion size based on the generalized jackknife. Their jackknife
estimator (JE) is intended to do well when faults have vary-
ing difficulty. Their derivation uses a probability model in
which the difficulty of each fault is described by its discovery
probability p;, i = 1,...,N. The p;’s are assumed to be a
random sample from an unknown distribution. Given the p;’s
the events that reviewer j discovers fault ¢ are independent
with probabilities p;; = p; depending only on the fault index
t. We say that reviewers are probabilistically independent
and identical. Faults have differing difficulties (p;’s) but the
difficulty of any given fault is the same for all reviewers.
The JE derived from this model has the form

fo=max{0,a1fi + -+ ag fr }

where k < t is the jackknife order and ai,...,a; are given
constants (depending on ¢ and k). Full details as well as a
method for selecting & based on the data are givin in [2]. The
simulation results discussed below incorporate their method

for selecting k.

2.3 Grouping faults

If there are several types of faults with different discovery
probabilities, the MLE can perform poorly because it treats
all faults the same—we have pooled them together to estimate
fo. In this case it is helpful to classify the faults into a small



number of groups and estimate faults separately within each
group. These groups should be formed so the for a given re-
viewer and a given group, all the issues should have identical
capture probabilities. Our simulation has two types of faults,
A and B. We study MLE and JE estimators formed by es-
timating the two populations of faults separately and then
adding the results. If fOA and fOB are MLEs of undiscovered
type A and type B faults respectively, then the grouped MLE
is
fo = foa + foB.
We also study the grouped JE which is defined similarly.

2.4 Confidence bounds

For estimators with small bias it is interesting to compare
coverage probabilities for confidence bounds constructed us-
ing various approximations. We compare 3 methods for con-
structing upper confidence bounds on f; and we recommend
one of them. An upper confidence bound is the largest value
of fo that the data can credibly support. An upper bound
that is far greater than fo indicates that the data support a
wide range of possible values for f;. Though lower bounds
are just as easy to calculate, upper bounds are more useful to
a software developer who wants to be confident that no more
than a few faults remain undiscovered in a design.

Wald confidence bounds for fy are based on the asymp-
totic normal distribution of the MLE. An approximate upper
100(1 — )% confidence bound is

fO + Zy SW

where fo is the MLE, zy is the 1 — v quantile of the standard
normal distribution, and
-1

sw=m+fo) |[[[e" =D ' +t—1
J J

with g = (n+ fo — n;)/(n + fo) [2].

Likelihood ratio confidence bounds are based on the
asymptotic distribution of the likelihood ratio statistic. An
approximate upper 100(1 — v)% confidence bound is

sup{fo : £(fo) = £(fo) < x3 ,/2}

where fo is the MLE and Xiv is the 1 — v quantile of the y?
distribution. In instances where the distribution of the MLE
is well centered over that of fj it is interesting to compare cov-
erage probabilities for Wald and Likelihood Ratio type confi-
dence bounds.

An approximate upper 100(1 — )% confidence bound [2]
for fy as

fO + Zy 8]
where fo is the JE and

k
n 9 1
sl DL
ji=1

L3 —

In instances where both the MLE and the JE have small bias
it is interesting to compare coverage probabilities for Wald,
Likelihood Ratio and Jackknife confidence bounds.

When faults are grouped according to type, Wald confi-
dence bounds for fy can be computed as

(fOA +f0B) +Z’Y\/S%VA + S%VB

where our notation 1s an obvious extension of that above.
Likelihood Ratio confidence bounds are computed from

sup{fo : La(foa) + La(foB)—

max(La(foa) + La(fo — foa)) < Xi'y/Q}'
Joa

Jackknife confidence bounds are given by

(fOA + fOB) + 2y1/834 + 535

3 Simulation

In this section, we describe a simulation study comparing the
behavior of the MLE and JE. Otis et al. [7] give extensive
simulation results on various estimators of population size
under many probability models. They include results for the
MLE and JE. Their focus, however, is on estimating the to-
tal population size whereas we focus on estimating the size
of the undiscovered population. Thus, we compare fo to the
true value fy while Otis et al.compare N = fo + n to the
true value N. This difference makes our results seem more
alarming—estimating only 5 remaining faults when there are
actually 10 sounds worse than estimating 95 total faults when
there were 100. Two other substantive differences between
our simulation and that of Otis et al. are as follows. Our
study points (see Subsection 3.1) represent document reviews
while theirs represent capture-recapture wildlife surveys. The
sets of fault discovery probabilities we judged to be typical for
design reviews are not included in the sets of capture proba-
bilities Otis et al. studied. Secondly, we study 3 methods for
setting confidence bounds. Two of these, including the one
we recommend, were not studied by Otis et al.

We describe only 3 of 25 study points in this section. The
3 examples, however, show the two main results of the pa-
per: the MLE and JE can severely misestimate the number
of remaining faults in mixed fault populations, and this mis-
estimation can be largely corrected for MLE by categorizing
the faults and estimating from each group separately (Sub-
section 3.2). Section 4 presents results for all the simulated
study points.

3.1 Cases studied

Often in our observations and follow-up interviews of require-
ments and design reviews (we have observed over 50 reviews
and have interviewed over 100 reviewers), we observed that



1. many reviewers think that faults occur in at least two
categories; easy to observe (not requiring much thought)
and hard to observe (requiring much thought);

2. one or two reviewers contribute a large percentage of
the faults observed; and

3. many reviews have a specialist—one reviewer whose sole
goal is to identify one type of fault.

We simulated four different cases®as shown in Table 1.

They are representative of design and requirement document
reviews. The last column of the table references each case
to one of the three observations listed above. The four cases
allow us to probe the biases that the MLE and JE may be
susceptible to when applied to software design reviews.

For all cases, we assumed 5 reviewers for each review with
100 faults to be discovered. Faults were of two types: Na of
Type A and Np of Type B. The mix of faults (N ,Np) varied
over the set {(100,0), (75, 25), (50, 50), (25, 75), (0,100)}. For
each (Na,Np) pair the vectors ps and pp of discovery prob-
abilities for the b reviewers varied over the 4 cases shown in
Table 1.

Cases 1 and 2 model when the reviewers on a team are
almost identical in their ability to find faults but some faults
are more difficult to find than others. In Case 1 each re-
viewer has a small (10%) chance of finding Type A faults and
a medium (60%) chance of finding Type B faults. In Case
2 they have medium (40%) and high (90%) chances respec-
tively. Columns 4 and 5 of Table 1 list the expected percent
of undiscovered faults of each type. This ranges from near
60% when faults are difficult to find (Case 1, Type A) to near
0 when faults are easy to find (Case 2, Type B.)

Cases 3 and 4 model differences among reviewers in ad-
dition to the differences between fault types. In Case 3 two
reviewers specialize in finding Type A faults and two others
specialize in finding Type B faults. Just over 2% of faults of
either type remain undiscovered on average. In Case 4 Type
A faults are difficult for all reviewers to find and about 22%
go undiscovered on average. Type B faults are similar except
that one reviewer can find most of them (80% on average).

Crossing the 4 cases in Table 1 with the 5 (Na,Np) pairs
gives 20 study points. For each study point 1000 reviews were
simulated. The study points with Nao = 0 or Ng = 0 satisfy
the assumptions used to derive the MLE. The other study
points do not conform to the assumptions for either the MLE
or the JE. The study points corresponding to Cases 1 and 2
are, however, similar to those used to derive the JE.

For a given Case and (Na, Np) pair we generated data
sets representing 1000 reviews. Each dataset consisted of two
matrices (one Na x5 and one Np x5) of independent Bernoulli
variates indicating which reviewers discovered which faults.
From each matrix we calculate the summary statistics needed

2We use Case to refer to a choice of fault reviewer detection prob-
abilities vectors (pa, pp). The term study point refers to a choice of
the numbers of each type of fault (Na,Ng) as well as the detection
probability vectors (pa, PB).

to form the various estimates and confidence bounds for faults
remaining. These summary statistics are n, (ny,...,ns) and
(f1,...,f5). The summary data were then used to calculate
separate estimates of fy for type A and type B faults and a
third estimate based on the pooled data for both fault types.
This gave 6 estimates—3 for the MLE and 3 for the JE. Also
for each data set we computed 9 confidence bounds: Wald,
Likelihood ratio and Jackknife bounds for type A, type B and
pooled data. The next section summarizes our findings.

3.2 Behavior of MLE and JE

Figures 1, 3 and 4 show scatter plots of the estimated number
of undiscovered faults fo plotted against the actual number f;.
Figure 1 displays both the MLE and the JE for a study point
with only one fault type. The data sets for Figures 3 and 4
had two types of faults. This was ignored in Figure 3 but
not in Figure 4. We discuss the plots in more detail below,
but notice that both estimators in Figure 3 have significant
biases. Comparing the left panels of Figure 3 and Figure 4
shows how much this bias can be reduced when MLEs are
calculated separately for each fault type.

All of our scatter plots have log(l + ) scales for both
fo and fy. This makes, for example, a 10% increase from
fo = 10 to on = 11 roughly the same vertical distance as a
10% increase from fo = 100 to fo = 110. (A log(z) scale
would make the comparison exact but then on = 0 could
not be included.) The plotted points have been jittered for
clarity but the vertical bands of points in the plots remind us
that fy is an integer. In the comparisons below we use the
median estimation error med(fo—fo) to summarize the typical
amount by which fo over- or under-estimates fy. The reason
we use the median rather than the mean is that the mean
estimation error of the MLE is theoretically infinite because
there is always a small probability that fo will be infinite. We
discuss this further in subsection 4.2.

3.2.1 Study point with 1 fault type

Figure 1 shows plots of fy vs. fo for Case 4 with (Na,Np) =
(0,100). The MLE is plotted in the left panel and the JE in
the right one. Only Type B faults are present so this study
point obeys the assumptions used to derive the MLE. One
reviewer finds 80% of the faults on average. Each of the other
four finds an average of 20%.

In this case the MLE behaves much better than the JE.
More than half of the MLEs are between 4 below fy and 2
above fo with a median of 1.1 below. (See Tables 2 and 3 and
Figure 5 in Section 4.)

The JE, on the other hand, does poorly. Just over 8 faults
go undetected on average yet half of the JEs are from 23 to
39 faults too high with a median of about 30. Thus, the JE
often overestimates by a factor of 3 to 4.

Another striking observation from Figure 1 is that neither
the MLE nor the JE appears to be correlated with fy. This



Table 1: Simulation cases

discovery probabilities

percent undiscovered

Case Pa PB Type A Type B Observation
1 (.1,.1,.1,.1,.1) (.6,.6,.6,.6,.6) 59.05% 1.02% 1
2 (4,4,4,4,4) (9,.9,.9,9.9) 7.78 0.001 1
3 (.8,.8,.3,.1,.1) (.1,.1,.3,.8,.8) 2.27 2.27 1,2,3
4 (.1,.3,.3,.3,.3) (.8,.2,.2,.2,.2) 21.61 8.19 1,2,3
100 100 -
50 50
20 20
w10 é 10
= g

50

100

Figure 1: Simulation Results — One Fault Type. Plots of fo (MLE on left, jackknife on right) versus f; when Ny = 100
and pg = (.8,.2,.2,.2,.2). The axes are on a log(1+ z) scale. The diagonal line is fy = fo. For this study point med(fo — fo)
is —1.1 faults for the MLE and 29.8 faults for the JE. Neither estimator is well correlated with fy.

indicates a certain limitation on the information that the ob-
served data contain about f;. Although the distribution of
the MLE is centered over the distribution of fj, the two quan-
tities are not substantially correlated when the parameters of
the reviews do not change. In practice, however, each review
is different. Some designs have few faults, others have many.
The sets of reviewer detection probabilities are different and
the number of reviewers is not constant. Figure 2 shows a
scatter plot of fo vs. fo for the MLE over our entire simula-
tion. When the review conditions change, large values of f,
tend to produce large estimates fo.

3.2.2 Study points with 2 fault types

Figures 3 and 4 are plots of fo for Case 2 with (Na,N) =
(75,25). In Figure 3 neither the MLE nor the JE does well as
the centers of the clouds of points are far from the 45 degree
line. Here we have treated all faults the same—we have pooled
them together to estimate fj.

A potential solution to the population having two types
of faults, A and B, is to estimate the populations of faults
separately, and then add the results. We call this grouping
(versus pooling) the faults. In Figure 4 the MLE is signifi-
cantly improved as the center of the cloud is now very close
to the 45 degree line. The grouping of faults has virtually no

effect on the JE. The right hand plots of Figures 3 and 4 are
almost identical.

We should note that the improvement comes with a price.
First, we have assumed that we can define fault types and
correctly classify faults into the types. Miller [6] argues that
this can be done accurately for about 7 categories. Further-
more, though dividing faults into more homogeneous groups
can greatly improve bias, it will also increase the variabil-
ity of the estimators. It is important to use fault categories
broad enough so that several faults within each category are
expected to be found by more that one reviewer. Otherwise
the variability of the MLE will be large. (In fact if there is a
fault type in which no fault is found by at least 2 reviewers,
the MLE for that fault type will be infinite.)

3.3 Confidence bounds

Our study has shown that the median estimation error of the
MLE is small if there is only one fault type or if faults are
grouped into a small number of types. Having obtained an
estimator with low bias it is important to compare different
methods for setting upper confidence bounds on fp.

Return to the study point discussed in subsection 3.2.1 in
which (Ng, Ng) = (0,100), ps = (.8,.2,.2,.2,.2). We com-
puted Wald and LR upper 95% confidence bounds for each of
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Figure 2: Simulation Results — All MLE Single Fault Trials. Scatter plot of the MLE versus f; over all simulated
data sets with only one type of fault. Large values of f; tend to produce large MLEs demonstrating the correlation between

fo and fo

the 1000 simulated data sets. Ideally, fo will fall below the up-
per bounds in 95% of the simulations. The actual percentages
are 86.3% for Wald bounds and 99.2% for LR bounds. We
refer to these actual percentages as coverages and say that an
upper bound fails when fy exceeds the bound. The coverages
we report for this study point are typical of the other study
points and lead us to the generalization that Wald bounds
tend to be anticonservative (they fail too frequently) while
LR bounds tend to be conservative (they fail less often than
anticipated.)

Using confidence bounds is important because they indi-
cate how much information the data provide to estimate fy.
We recommend using upper LR bounds with the understand-
ing that they tend to fail less often than anticipated and are
thus the conservative choice.

4 Further Discussion of Simulation
Results

Figure 5 shows box plots of estimation errors from all 20 study
points we simulated. The left half of the figure shows results
for the MLE and the right half shows results for the JE. Each
row of plots corresponds to a different set of discovery prob-
abilities (pa, pp). Within a row there are 5 pairs of boxplots
for the MLE and 5 pairs for the JE. The left member of each
pair corresponds to pooling all faults together into one group.
The right member corresponds to grouping faults according

to type. Each pair represents a different issue mix (Na, Np)
ranging from (100, 0) on the left to (0, 100) on the right. Ar-
rows on the top or bottom of some of the boxplots indicate
that a portion of the estimation errors were greater than 50
in magnitude.

Table 2 reports E fy for the 20 study points. Table 3 re-
ports median estimation errors, med(fy — fo), for the MLE.
The upper left entry in each cell of the table corresponds to
pooling faults whereas the lower right entry corresponds to
grouping them by type. Table 4 is for the JE and has the
same format as Table 3. Standard errors for the entries in
Table 3 (based on an estimate of the probability density at
the median) are less than 1.1 faults and less than 4% of E'fy
except in cell (2,5) in which case fy is nearly always zero
and fo nearly always rounds to zero. The entries in Table 4
have standard errors of less than 0.7 faults and less than 15%
of E'fy. Using medians rather than means to measure loca-
tion allows an estimator to be considered well centered even
if its distribution has a long right tail that greatly affects the
mean. In particular, the MLE is infinite with positive proba-
bility and hence the theoretical mean estimation error is also
infinite. The median error, however, is sometimes near zero.
In the discussion of Figure 5 to follow we will refer to values
from Tables 2 and 3 without reference.
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Figure 3: Simulation Results — Two Fault Types Estimated Together. Plots of fo (MLE on left, jackknife on right)
versus fo for two fault types (Na, Ng) = (75,25), Case 2 pa = (.4, 4, .4, .4, 4)and pg = (.9,.9,.9,.9,.9), and fault types not
distinguished by the estimators. Both the MLE and the JE are substantially biased.
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Figure 4: Simulation Results — Two Fault Types Estimated Separately. Plots of on (MLE on left, jackknife on right)
versus fy for two fault types (Na, Np) = (75,25), Case 2 pa = (4, .4, .4, .4, .4) and pp = (.9,.9,.9,.9,.9), and fault types
estimated separately. Note the improvement in the median amount of underestimation for the MLE between Figure 3 and
here: the median has shifted from -4.5 to -.6. The JE remains a poor estimator.

Table 2: Expected number of undiscovered faults for the 20 study points simulated.

(Na,Ns) = (100,0) | (75,25) | (50,50) | (25,75) | (0, 100)
oz Eé é é é ég 59.0 | 445 | 300 | 155 | 1.02
o Eg :g” :3: :g: :gg 7.8 5.8 3.9 19 | 0.001
oz Eé é g f f; 221 | 221 | 2271 | 221 | 221
oz Eé ;’ ;’ 3 ;’; 216 | 182 | 149 | 115 | 819
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Figure 5: Box Plots of on — fo for all Simulated Data Sets. The left member of each pair of boxplots corresponds to
pooling all faults together. The right member corresponds to grouping faults according to type. Grouping has little effect
on the JE. For the MLE, grouping typically brings the median error closer to zero while increasing the variability somewhat.
For example, in row 1 note how the “grouped” boxes for the MLE are better centered but taller than the “pooled” ones.



Table 3: Median number of faults overestimated by the MLE when faults are pooled (upper left corners) and grouped by

type (lower rights).

(Na,Ng) = (100,0) (75,25) (50, 50) (25,75) (0,100)
pa=(1,1,1,11) |-22 -38.9 27.7 -14.6 0.5
ps = (.6,.6, .6, .6,.6) 2.2 2.9 2.7 2.6 0.5
pa=(4444.4) |-05 4.5 4.0 2.0 0.0
ps =(.9,.9,.9,.9,.9) 0.5 0.6 0.6 0.6 0.0
pa=(1,1,.3828) |-04 3.5 5.4 3.4 0.5
ps = (.8,.8,.3,.1,.1) 0.4 1.0 1.1 1.0 0.5
pa=(1,33323) |-13 3.5 4.3 3.6 1.1
ps = (8,2, 2, 2,2 1.3 1.6 2.1 1.0 1.1

Table 4: Median number of faults overestimated by the JE when faults are pooled (upper left corners) and grouped by type

(lower rights).

(Na,Ng)=  (100,0) (75, 25) (50, 50) (25,75) (0,100)
pa=(1,1,1,11) |-23 4.8 8.8 45 0.0
ps = (6, .6, .6, .6,.6) 2.3 0.8 0.1 1.2 0.0
pa=(4, 4,4 4 4) | 134 9.7 6.6 3.4 0.0
ps =(9,9,.9,9,.9) 13.4 9.7 6.6 3.5 0.0
pa=(1,.1,.388) |3.0 2.8 2.8 2.6 3.0
ps = (8,8,.3,.1,.1) 3.0 5.3 6.7 5.4 3.0
pa=(1,.3,333) |21.2 22.9 24.8 28.1 29.8
pe = (.8,.2,.2,.2,.2) 21.2 922.9 24.8 28.1 29.8




4.1 Study points with one fault type

In Figure 5 the boxplot pairs for study points with a single
type of fault are positioned along the left, center and right
margins. In this subsection we focus on these 16 pairs of box-
plots. Naturally the pooled (left) and grouped (right) box-
plots in each pair are identical because all the faults are of
the same type. It is interesting, however, to compare the
MLE to the JE and to observe how estimation errors change
with the discovery probabilities pa or ps.

Because these study points conform to the assumptions of
the MLE, it is not surprising that the MLE usually outper-
forms the JE. In fact, the JE does quite poorly for many of
these cases. For example, in row 4 with Nao = 100 the JE
usually overestimates fy by more than 20 faults, while errors
from the MLE have a median of —1.3. The variability of JE
errors is also much greater.

The one study point (with a single fault type) where the
JE does better than the MLE is in the top row with Ny = 100.
Here both the MLE and the JE give estimation errors with
medians near zero but the errors from the JE are less variable.

We make the following generalizations from Figure 5 about
cases with a single type of fault. The MLE has a distribution
which is centered slightly below that of fy. In our study the
median estimation error ranged from —2.2 to 0. The JE on
the other hand can severely overestimate fy—often by more
than a factor of 2. Estimation errors from the MLE also tend
to be less variable than those of the JE. The reverse can also
be true, however, especially when discovery probabilities are
small.

4.2 Study Points with two fault types

In Figure 5 the 24 pairs of boxplots representing study points
with two types of faults are those that do not border a
margin—Ileft, center or right. We now discuss these.

Looking over the 12 pairs of boxplots for the MLE im-
mediately shows that the MLE can be severely biased when
faults of different types are pooled and most of the bias can
be removed if faults can be grouped according to type. The
JE is much different. It is only slightly affected by mixed fault
types. It can be severely biased regardless of whether faults
are pooled or grouped.

Scanning across row 1 shows the effect of mixing an ever
larger fraction of relatively easy to find Type B faults (60%
discovery probability per reviewer) with hard to find Type A
faults (10% probability). Mixing just 25 Type B faults with
75 of Type A causes the MLE (without grouping) to severely
underestimate fy. In this case grouping affects the MLE in
two major ways. It brings the median estimation error up
to near zero but also dramatically increases its variability.
This nearly threefold increase in the interquartile range is due
mostly to the difficulty in estimating the number of undiscov-
ered Type A faults. Inspecting the other study points with
only one fault type (see appropriate portions of Table 3 and
Figure 5 in Section 4) shows that the distribution of the MLE
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is characteristically well centered over that of fy. The esti-
mation errors have medians ranging from -2.2 to 0.

Variability of the estimation errors depends, to a large
extent, on the specific fault discovery probabilities. In one
study point both fy and fg were virtually always equal to 0 so
there was almost never an estimation error. In another study
point the interquartile range of the errors was 36 faults—more
than half the median of 59.1. [The interquartile range is the
difference between the 1st and 3rd quartiles (25th and 75th
percentiles) and is a measure of variability.]

By contrast, the JE performs relatively well throughout
row 1. It is only slightly affected by mixing Type A and B
faults. In row 1 the JE usually performs better than the MLE
(either with or without grouping).

Some of the MLEs in row 1 of Figure 5 were infinite. When
no fault is found by more than one reviewer, the data indicates
that there are many difficult to find faults. The more faults
there are and the more difficult they are to find, the more
likely it is that no fault will be found by two or more reviewers.
The MLE is forced to be infinite. Thus, for a small group of
difficult to find faults capture-recapture data often provides
little information on the size of the group. If faults are to
be grouped, it is important that in each group it is likely for
several faults to be found by at least two reviewers.

Infinite estimates occur only for the MLE and in our sim-
ulation they appeared only in row 1 of Figure 5. They could
have appeared in any row but the probability of this is ex-
tremely small in rows 2, 3 and 4.

Row 2 of Figure 5 shows the effect of mixing easy to find
Type B faults (90% discovery probability per reviewer) with
moderate Type A faults (40% probability). The MLE is af-
fected in the same direction as in row 1—adding easy to find
faults to the mix causes the MLE to underestimate fy. Now
the effect is smaller, though, because in row 2 most of the
faults are found.

The JE in row 2 does poorly. It overestimates fy too often
and is more variable than the MLE.

To understand why mixing fault types can bias the MLE
so severely when reviewers are identical, consider an extreme
case with several identical reviewers where half of the faults
are easy to find (p near 1) and half are difficult (p near 0).
Then each reviewer will discover nearly all of the faults that
are found. The model for the MLE entertains only 1 fault
type. Under this model, if all reviewers find essentially the
same faults, then each reviewer is judged to have found nearly
all the faults that exist. The, estimated number unfound is
near 0 when in fact about half of the faults were not found.
The effect is similar in less extreme cases. Mixing very differ-
ent fault types is worse than mixing similar ones.

Rows 1 and 2 of Figure 5 showed that mixed fault types
can cause the MLE to underestimate fywhen reviewers are
identical. In rows 3 and 4 mixed fault and mixed review-
ers types cause the MLE to overestimate fy. In row 3 two
reviewers specialize in finding Type A faults and two others
specialize in Type B faults. When, for example, there are 50



faults of each type, the MLE nearly always overestimates fj.
The JE has a better centered distribution but it is also much
more variable. Grouping faults by type improves the MLE
and has a small adverse effect on the JE.

Finally, in row 4 all faults are difficult for all reviewers
to find except that one reviewer finds one type of fault eas-
ily. Here the MLE is affected, but not severely, by the mix
of fault types. Nevertheless, grouping faults by type brings
the median estimation error closer to zero and only slightly
increases its variability. The JE in this case is severely biased
regardless of the fault mixture and whether faults are pooled
or grouped.

We make the following generalizations from Figure 5 about
estimating fo when there are two types of faults. A mixture
of fault types can cause the MLE to either over- or under-
estimate fy depending on the number and types of faults and
reviewers. The effect can be severe, easily producing estimates
as small as 20% of f; or as large as 4 times fy. Grouping faults
into types generally brings the median estimation error closer
to zero but in some cases can dramatically increase the vari-
ability. If grouping is used, it is important to choose groups
so that several faults in each group will be found by at least
2 reviewers. This will help to control the increased variability
associated with grouping. The JE is not greatly affected by
a mixture of fault types. Recall that the JE was derived to
handle fault heterogeneity. However, the JE’s nominal (single
fault type) performance can be so poor that its performance
with mixed fault types matters little.

4.3 Confidence bound comparisons

4.3.1 Study Points with 1 fault type

Tables 5 and 6 give coverage probabilities for Wald, Likeli-
hood ratio and Jackknife upper confidence bounds for fy. The
bounds are constructed to have 95% nominal coverage. Ta-
ble 5 presents coverages for all 20 study points but including
only the Type A faults. Table 6 gives coverages for Type B
faults. We include only a single type of fault in these tables,
making no attempt to study cases where two types of faults
are pooled because the MLE performs so poorly with mixed
fault types that coverage probabilities matter little. The next
subsection considers cases with 2 fault types when type is
taken into account. Even in some of the single fault study
points, however, the JE can severely over-estimate fy. In
these cases JE bounds are much too high so the coverage is
near 100%.

Using the binomial variance typical standard errors for the
entries in Tables 5 and 6 are 1.3%, 0.7% and 0.3% for entries
near 80%, 95% and 99% respectively.

The tables show that the coverage of Wald bounds is often
too low (typically 75% to 85%.) Likelihood ratio bounds have
true coverage probabilities closer to the nominal value of 95%
(typically 93% to 99.5%.) Likelihood ratio bounds, however,
are often too conservative; many of the coverage probabilities
exceed 99%. In rows 2 and 4 of Table 5 and row 4 of Table 6
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the coverages for Jackknife bounds are too high because of the
jackknife’s large positive bias. In the other rows, where the
bias is not so severe, coverage is too low (typically between

70% and 90%) like the coverage for Wald bounds.

4.3.2 Study Points with 2 fault types

Table 7 gives coverage probabilities for Wald, Likelihood ratio
and Jackknife upper 95% confidence bounds for fy. Coverages
for the three confidence bounds when faults are grouped by
type are similar to coverages for single fault types. Coverage
for Wald bounds is usually too low—typically from 80% to
90%. Coverage for Likelihood ratio bounds is usually too high
making them conservative. Coverage for Jackknife bounds
is greatly affected by the bias of the JE. It is only 58% in
cell (1,5) and at or near 100% in every cell of row 4.

5 Summary

Capture-recapture methods have recently been used to esti-
mate the number of faults remaining in software design docu-
ments. Two possible estimators are the maximum likelihood
estimator (MLE) and the jackknife estimator (JE). This work
presents simulation results that show the following.

e The JE can greatly overestimate f; when reviewers, de-
tection probabilities differ. For example, suppose a doc-
ument has 100 faults. If one reviewer has a .8 probability
of finding any given fault and each of 4 other reviewers
has a .2 probability, then the JE is usually more than 3
times fo.

Both the JE and the MLE can estimate poorly when
some faults are easy to find and others are difficult.
For example, if a document has 75 faults with .4 (per
reviewer) discovery probabilities and 25 faults with .9
probabilities, then the median of the MLE is 1.3 when
5.8 remain undiscovered on average. The median of the
JE is 15.7 or about 2.6 times the expected remaining.

If faults can be categorized into types then estimates
can be formed for each of the types separately. This
greatly reduces (but does not eliminate) the bias of the
MLE.

A final finding of the simulation concerns upper confidence
bounds when all faults are of one type. Bounds based on
likelihood ratio tests tend to have coverage probabilities closer
to their nominal levels than bounds based on either Wald
statistics or the JE.

Three general recommendations can be drawn from these
findings. First, if using the MLE, try to divide faults into a
small number of groups so that within each group it is rea-
sonable that a given reviewer will have a fixed probability of
finding any fault. Groups formed in this way should be large
enough that some faults in each group are discovered by more



Table 5: Attained coverage percentages for Wald (upper left corners), Likelihood Ratio (centers) and Jackknife (lower rights)
upper 95% confidence bounds for Type A faults

Na 100 75 50 25
1,.1) 86.2 86.3 84.7 78.7
6 .6’.6) 99.5 99.0 98.6 96.8
o 88.5 87.0 85.1 69.8
4, 4) 89.6 86.6 84.6 81.2
9’ '9) 99.8 99.6 98.4 95.6
" 99.9 99.5 98.0 97.2
8,.8) 85.9 83.9 81.3 77.1
'1"1) 98.1 96.6 93.4 91.3
o 80.6 75.1 69.1 88.2
3,.3) 88.9 88.7 85.5 82.6
'2’ '2) 99.7 99.6 98.9 96.7
o 99.7 99.7 99.7 97.8

Table 6: Attained coverage percentages for Wald (upper left corners), Likelihood Ratio (centers) and Jackknife (lower rights)
upper 95% confidence bounds for Type B faults

Np 25 50 75 100
1,.1) 79.2 80.9 83.7 83.8

’ .6) 93.8 95.2 95.7 96.5

T 85.7 89.6 66.8 d7.7
4, 4) 100.0 99.9 100.0 99.8
9"9) 100.0 99.9 100.0 99.8

T 1.4 2.1 3.7 3.2
8,.8) 76.9 81.5 81.9 85.7
'1’ '1) 92.6 93.5 96.9 97.6
o 88.6 73.4 76.8 79.2
3,.3) 72.9 80.7 86.0 86.3
'2’ '2) 90.1 96.9 98.0 99.2
o 99.6 100.0 100.0 100.0
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Table 7: Attained coverage percentages for Wald (upper left corners), Likelihood Ratio (centers) and Jackknife (lower rights)
upper 95% confidence bounds for when faults are grouped by type.

(Na,Ng)=  (100,0) (75, 25) (50, 50) (25,75) (0,100)
111y | 862 86.0 83.9 7.7 83.8
6.6 6. 6.6) 99.5 98.8 97.7 84.8 96.5
R 88.5 87.9 88.6 78.6 57.7
89.6 86.6 84.6 81.2 99.8
44,4, 4
o 0 g 93 99.8 99.6 98.4 95.6 99.8
R 99.9 99.5 98.0 97.5 3.2
13858 |59 78.4 78.1 77.6 85.7
88 3 11) 98.1 95.1 93.6 95.1 97.6
R 80.6 95.6 92.1 95.5 79.2
88.9 86.6 85.1 85.1 86.3
3,3,3,3
Sy 23 99.7 99.6 99.4 99.3 99.2
St 99.7 99.9 100.0 100.0 100.0

than 1 reviewer. Otherwise, the MLE will be infinite. Sec-
ond, recognize that even after grouping, the MLE tends to
estimate too low—from 7% to 62% in the simulated study
points. Third, use confidence bounds based on the likelihood
ratio test statistic. They tend to have more accurate coverage
probabilities.

Grouping faults into types has the effect of better satisfy-
ing the assumptions of the MLE. As we anticipated, grouping
faults by type does not improve the JE. The equivalent tech-
nique for the JE would be to group reviewers by speciality.
This is a possible area for further study. With typically only
5 to 7 reviewers, however, dividing them into “homogeneous”
groups could be difficult.
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