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Abstract 

The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is in-

vestigated.  Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise appli-

cation of the following nonparametric regression techniques are described:  (i) locally weighted regression (LOESS), 

(ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression.  Then, in the sec-

ond and concluding part of this presentation, the indicated procedures are illustrated with both simple test problems 

and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot 

Plant).  As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression 

techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensi-

tivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear rela-

tionships between model inputs and model predictions are present. 
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1.  Introduction 

The importance of uncertainty analysis and sensitivity analysis as components of analyses for complex systems 

is almost universally recognized, where uncertainty analysis designates the determination of the uncertainty in 

analysis results that derives from the uncertainty in analysis inputs and sensitivity analysis designates the determina-

tion of the contributions of individual uncertain analysis inputs to the uncertainty in analysis results.1-11  A number 

of approaches to uncertainty and sensitivity analysis have been developed, including differential analysis,12-17 re-

sponse surface methodology,18-26 Monte Carlo analysis,27-38 and variance decomposition procedures.39-43  Over-

views of these approaches are available in several reviews.44-52  

The focus of this presentation is on Monte Carlo (i.e., sampling-based) approaches to uncertainty and sensitivity 

analysis.  Such analyses involve the consideration of models of the form 

( ) ,=y f x  (1.1) 

where 

[ ]1 2, , , nYy y y= …y  (1.2) 

is a vector of analysis results and 

[ ]1 2, , , nXx x x= …x  (1.3) 

is a vector of imprecisely known analysis inputs.  In general, the model f can be quite large and involved (e.g., a 

system of nonlinear partial differential equations requiring numerical solution (e.g., Ref. 53) or possibly a sequence 

of complex, linked models as is the case in a probabilistic risk assessment for a nuclear power plant (e.g., Refs. 54, 

55) or a performance assessment for a radioactive waste disposal facility (e.g., Refs. 56, 57); the vector y of analysis 

results can be of high dimension and complex structure (e.g., the elements of y might be several hundred temporally 

or spatially dependent functions); and the vector x of analysis inputs can also be of high dimension and complex 

structure (e.g., several hundred variables, with some variables corresponding to physical properties of the system 

under study and other variables corresponding to parameters in probability distributions or perhaps to designators for 

alternative models). 

The uncertainty in the elements of x is characterized by a sequence of probability distributions 

D1, D2, …, DnX, (1.4) 
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where Dj is a probability distribution characterizing the uncertainty in xj.  Correlations and other restrictions involv-

ing the relations between the xj are also possible.  Such distributions and any associated restrictions are intended to 

numerically capture the existing knowledge about the elements of x and are often developed through an expert re-

view process.58-73  

The uncertainty characterized by the distributions D1, D2, …, DnX in Eq. (1.4) is often referred to as epistemic 

uncertainty.  Alternate designations for epistemic uncertainty include state of knowledge, subjective, reducible, and 

type B.74-82  In particular, epistemic uncertainty derives from a lack of knowledge about the appropriate value to use 

for a quantity that is assumed to have a fixed value in the context of a particular analysis.  In the conceptual and 

computational organization of an analysis, epistemic uncertainty is generally considered to be distinct from aleatory 

uncertainty, which arises from an inherent randomness in the behavior of the system under study.74-83 

Sampling-based uncertainty and sensitivity analyses are based on a sample 

1 2 ,, , , , 1, 2, , ,i i i i nXx x x i nS⎡ ⎤= =⎣ ⎦… …x  (1.5) 

from the possible values for x generated in consistency with the distributions in Eq. (1.4) and any associated restric-

tions.  Random sampling is one possibility for the generation of this sample.  However, owing to its efficient stratifi-

cation properties, Latin hypercube sampling is widely used in analyses of this type, especially when computationally 

intensive models are involved.27, 37, 38 

The analysis evaluations 

( ) ( ) , 1, 2, , ,i i i i nS= = = …y y x f x  (1.6) 

provide a mapping between analysis inputs (i.e., xi) and analysis results (i.e., yi) that forms the basis for both uncer-

tainty analysis and sensitivity analysis.  Once the preceding mapping is available, the determination of uncertainty 

analysis results is generally straightforward and involves the generation of summary results such as histograms, den-

sity functions, cumulative distribution functions (CDFs), complementary cumulative distribution functions 

(CCDFs), and box plots for individual elements of y (Sect. 6.5, Ref. 29).  The determination of sensitivity analysis 

results involves the exploration of the preceding mapping with techniques such as examination of scatterplots, re-

gression analysis, correlation and partial correlation analysis, and searches for nonrandom patterns (Sect. 6.6, Ref. 

29). 

The determination of sensitivity analysis results is generally more demanding than the determination of uncer-

tainty analysis results.  In particular, the popular regression and correlation based techniques can fail to appropri-

ately identify the effects of the individual elements of x on the elements of y when nonlinear and nonmonotonic 

relations are present (Sect. 6.6, Ref. 29).  Possible approaches to sensitivity analysis to use in such situations include 
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grid-based statistical analyses of scatterplots,30, 84 distance-based statistical analyses of scatterplots,85-98 

multidimensional Kolmogorov-Smirnov tests,99-102 rank-concordance tests,103, 104 and classification trees.105, 106  

However, the preceding approaches lack the intuitive appeal of regression-based approaches to sensitivity analysis.  

In particular, regression-based sensitivity analysis can be carried out in a sequential manner with variable impor-

tance being indicated by the order in which variables enter the regression model and by the fraction of total variance 

that can be accounted for as successive variables enter the regression model. 

The purpose of this presentation is to describe regression-based techniques for sensitivity analysis that are based 

on multiple predictor smoothing methods.  Such methods are conceptually consistent with regression-based methods 

that have been widely used in the past in sensitivity analysis (Sect. 6.6, Ref. 29), but have the important advantage 

that they are capable of incorporating local changes in the relationship between a dependent variable (i.e., an ele-

ment of y) and multiple independent variables (i.e., elements of x).  As a result, these methods can be successfully 

applied in situations involving nonlinear relationships between analysis inputs and analysis results where more tradi-

tional regression-based approaches would fail to appropriately capture these relationships. 

This presentation is divided into two parts.  In this, the first part, traditional approaches to regression-based sen-

sitivity analysis are briefly described (Sect. 2), nonparametric approaches to regression analysis based on local data 

smoothing are introduced (Sect. 3), algorithms for the stepwise implementation of the procedures described in Sect. 

3 as part of a sensitivity analysis are described (Sect. 4), and a brief summary discussion is given (Sect. 5).  Then, in 

the second part of the presentation,107 the described procedures are illustrated in sensitivity analyses involving both 

simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the 

Waste Isolation Pilot Plant)56, 57 

Although analyses for real systems almost always involve multiple output variables as indicated in conjunction 

with Eqs. (1.1) – (1.3), the following discussions assume that a single real-valued result of the form 

( )y f= x  (1.7) 

is under consideration.  Similarly, 

( ) , 1, 2, ,i iy f i nS= = …x , (1.8) 

is used to represent the result of evaluating y with the sample in Eq. (1.5).  This simplifies the notation and results in 

no loss in generality as the results under discussion are valid for individual elements of y.  All statistical analyses in 

this presentation are carried out within the R statistical computing environment,108 which is an open source equiva-

lent to the S-Plus statistical package.109 
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2.  Traditional Parametric Regression Models 

Several parametric regression models used in sensitivity analysis are briefly reviewed.  More information on 

such models can be obtained in a number of excellent texts (e.g., Ref. 110-114). 

2.1  Linear Regression 

Linear regression has long been the method of choice for researchers wishing to approximate a surface.  This 

regression model is predicated on a relation of the form 

0
1

,
nX

j j
j

y xβ β ε
=

= + +∑  (2.1) 

where ε is a random error term with an expected value of zero (i.e., E(ε) = 0). 

The approximate form of the relation in Eq. (2.1) is 

0
1

ˆ ,
nX

j j
j

y b b x
=

= + ∑  (2.2) 

where the bj are typically estimated with least squares procedures from observations of the form [xi, yi], i = 1, 2, …, 

nS.  In turn, the preceding approximation is often algebraically reformulated as 

( ) ( )( )
1

ˆ ˆ ˆ ˆ ˆ ,
nX

j j j j j
j

y y s b s s x x s
=

− = −∑  (2.3) 

where 

( ) ( )

( ) ( )

1 2
2

1 1
1 2

2

1 1

ˆ, 1

ˆ, 1 .

nS nS

i i
i i

nS nS

j ij j ij j
i i

y y nS s y y nS

x x nS s x x nS

= =

= =

⎡ ⎤
= = − −⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= = − −⎢ ⎥

⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑

 

The coefficients ˆ ˆ/j jb s s  in Eq. (2.3) are called standardized regression coefficients.  When the xj are independent, 

ˆ ˆ| / |j jb s s  can be used as a measure of variable importance.  Specifically, ˆ ˆ| / |j jb s s  indicates the effect of moving a 

variable away from its expected value by a fixed fraction of its standard deviation while holding all other variables 

fixed at their expected values.  Statistical tests can be used to indicate if the coefficients in Eqs. (2.2) and (2.3) ap-

pear to be different from zero.  However, in the context of sensitivity analysis, it is important to recognize that such 

tests are simply one form of guidance with respect to variable importance as the underlying distributional assump-
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tions with respect to the error term ε are not satisfied when deterministic models are under consideration (Sect. 

6.6.3, Ref. 29). 

The following identity holds when the relation in Eq. (2.2) is estimated with least squares procedures: 

( ) ( ) ( )2 2 2

1 1 1
ˆ ˆ ,

= = =
− = − + −∑ ∑ ∑

nS nS nS

i i i i
i i i

y y y y y y  (2.4) 

where ŷi denotes the estimate of yi obtained from the regression model (Sect. 3.4, Ref. 110).  In order from left to 

right, the three summations in the preceding equation are referred to as the total sum of squares (SStot), the regres-

sion sum of squares (SSreg), and the residual sum of squares (SSres).  Since SSres provides a measure of variability 

about the regression model, 

( ) ( )2 22

1 1
ˆ

= =
= = − −∑ ∑

nS nS

reg tot i i
i i

R SS SS y y y y  (2.5) 

provides a measure of the extent to which the regression model can match the observed results.  Specifically, R2 is 

close to 1 when the variation about the regression model is small (i.e., when SSres is small relative to SStot), which 

indicates that the regression model is successful in matching the observed results.  Similarly, R2 is close to 0 when 

the variation about the regression model is large (i.e., when SSreg is small relative to SStot), which indicates that the 

regression model is not successful in matching the observed results. 

When linear regression is used as a sensitivity analysis technique, the regression is usually performed in a step-

wise manner (Sect. 6.6.4, Ref. 29).  With this approach, the most influential variable is added to the model first 

(producing a model of the form in Eq. (2.2) with one independent variable); then the next most influential variable is 

added to the model (producing a model of the form in Eq. (2.2) with two independent variables); and the process is 

continued in this manner until no more influential variables can be identified.  Variable importance is then indicated 

by the order in which variables entered the regression model, the changes in R2 values as successive variables en-

tered the regression model, and the standardized regression coefficients for the variables in the final regression 

model.  However, it is important to recognize that standardized regression coefficients can produce very misleading 

indications of variable importance when highly correlated variables are included in the regression model (Sect. 

6.6.7, Ref. 29). 

An important special situation exists when the values for the xj used in construction of the regression model in 

Eq. (2.2) (i.e., in the sample in Eq. (1.5)) are independent.  Technically, this is equivalent to XT X being a diagonal 

matrix, where 
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11 12 1,

21 22 2,

,1 ,2 ,

1
1

.

1

nX

nX

nS nS nS nX

x x x
x x x

x x x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

…
…

# # # #
X  (2.6) 

In this situation,  

2 2 2 2
1 2 ,nXR R R R= + + +"  (2.7) 

where 2
jR  is the R2 value that results from regressing y on only xj (p. 99, Ref. 111).  Thus, 2

jR  is the contribution of 

xj to R2 when the sampled inputs are independent (i.e., when the design matrix X is orthogonal).  As a result, the 

incremental R2 values in a stepwise regression are equal to the contributions of the individual independent variables 

to the total R2 value for the regression. 

There are many favorable properties of linear regression such as computational speed and interpretability.  Hy-

pothesis testing for input variable importance can be performed with ease.  When the surface to be approximated is 

nearly linear in the inputs (i.e., the xj), there is no better technique.  However, in situations where the underlying 

relationship (i.e., the model in Eq. (1.7)) is far from linear, linear regression will produce a very poor approximation 

(Fig. 1).  As a result, a number of alternatives to linear regression have been developed, including rank regression 

(Sect. 2.2), quadratic regression (Sect. 2.3), and nonlinear regression (Sect. 2.4). 

The results in Fig. 1 come from an uncertainty and sensitivity analysis carried out for a two phase fluid flow 

model.  This analysis will be described in greater detail in Sect. 5.2 where it is used to illustrate multiple predictor 

smoothing methods.  This analysis involved 31 uncertain variables (i.e., nX = 31 in Eq. (1.3)).  The regression line in 

Fig. 1 involves only one uncertain variable.  Owing to the extreme nonlinearity of the relationships involved, the 

inclusion of additional uncertain variables in the regression model fails to produce a satisfactory representation.  For 

example, use of an α-value cutoff of 0.02 for entry of a variable into the regression model produces a model with 

five variables and an R2 value of only 0.27.  Additional discussion is given in Sect. 5.2.6. 

2.2  Rank Regression 

The results obtained with linear regression can often be improved with suitable transformations of the inde-

pendent (i.e., y) and dependent (i.e., x1, x2, …, xnX) variables.  For example, logarithmic or square root transforma-

tions may make the underlying relationships more linear and hence more amenable to analysis by linear regression.  

The identification of effective transformations is often subjective and thus difficult to automate.  As a result, the 

effective use of transformations in a large sensitivity study can be difficult due to the large number of independent 

and dependent variables under consideration. 
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One broadly applicable transformation is the rank transformation, which is effective when the relationships be-

tween independent and dependent variables are monotonic (Ref. 115; Sect. 6.6.6, Ref. 29).  The use of the rank 

transformation in conjunction with linear regression is straightforward.  The smallest value of a variable is given a 

rank of 1; the next largest value is given a rank of 2; and so on up to the largest value which is given a rank of nS, 

where nS is the sample size.  Equal variable values are assigned the average of what their ranks would have been.  

Then, the usual regression procedures are carried out with the original variable values replaced by their ranks (Ref. 

115; Sect. 6.6.6, Ref. 29). 

The rank transformation converts monotonic relationships into linear relationships (Fig. 2).  As a result, a linear 

regression in this situation with rank transformed data (i.e., a rank regression) provides a better approximation to the 

underlying relationships than would be obtained with a linear regression on the original (i.e., raw) data.  Rank re-

gressions have been successfully used in a large number of sensitivity analyses (e.g., Refs. 116-118).  However, rank 

regressions cannot significantly improve the quality of a regression analysis when the underlying relations are 

nonlinear and nonmonotonic (Fig. 3). 

2.3  Quadratic Regression 

Quadratic regression is used as a designator for linear regression that includes individual variables (i.e., the xj), 

variable squares (i.e., 2
jx ), and multiplicative interaction terms (i.e., xjxk).  Formally, quadratic regression is predi-

cated on a model of the form 

( )2

1 1 1
.α β β β ε

= = = +
= + + + +∑ ∑ ∑

nX nX nX

j j jj j jk j k
j j k j

y x x x x  (2.8) 

More generally, polynomial regression models that involve additional powers of the xj and more complex multipli-

cative interaction terms are also possible. 

Quadratic regression removes the assumption that the effects of the individual xj are completely additive but 

still cannot model completely general interactions.  Further, quadratic regression has difficulty representing func-

tions with asymptotes and other complex behavior.  Still, quadratic regression has been used with considerable suc-

cess in industrial applications for many years.20, 119 

A quadratic regression model (Fig. 4) shows significant improvement over the results previously shown for the 

application of linear and rank regression to a nonlinear and nonmonotonic relationship (Figs. 1, 3). 

2.4  Nonlinear Regression 

Nonlinear regression involves estimating the coefficients in a nonlinear relationship between y and the inde-

pendent variables under consideration.120  In particular, the regression models introduced in Sects. 2.1 – 2.3 are re-
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ferred to as linear models because y is expressed as a linear combination of the variables in the regression model.  In 

contrast, nonlinear regression involves estimating the coefficients βj, j = 0, 1, 2, …, in a hypothesized relationship 

such as 

( )0 1 2 3exp ,y x xβ β β β ε= + + +  (2.9) 

where the relationships between y and at least some of the independent variables are nonlinear in the sense that y is 

not represented as a linear combination of these variables.  Once the candidate form for the nonlinear regression 

model is decided on (e.g., the relationship in Eq. (2.9)), the βj’s can be estimated with techniques based on least 

squares, which is the maximum likelihood estimate when the ε’s are normally distributed. 

A major drawback to nonlinear regression is the requirement to decide on the form of the nonlinear regression 

model before the regression process can be initiated.  This can be a particularly daunting challenge in a sensitivity 

analysis where several hundred different dependent variables (i.e., y’s) may be under consideration with each de-

pendent variable potentially requiring the formulation of a different nonlinear regression model.  Further, model 

fitting, hypothesis testing, and interpreting of results is more difficult than is the case for linear regression.  For the 

proceeding reasons, nonlinear regression models are not considered in this study.  The nonparametric regression 

approaches introduced in the next section (Sect. 3) have advantages over nonlinear regression in that they can incor-

porate nonlinear relationships without the need to provide a priori specifications of model form. 

3.  Nonparametric Regression 

Linear regression analysis has many desirable properties.  When the underlying relationships are close to linear, 

no better technique is available.  However, when nonlinear relationships are present, linear regression analysis can 

give misleading results and possibly no results at all.  This potential failing provides the motivation for nonparamet-

ric regression. 

Nonparametric regression, which is often called smoothing, is a form of surface approximation that is based on 

an assumed relationship of the form 

( ) [ ]1 2, , , ..., ,nXy f x x xε= + =x x  (3.1) 

where E(ε) = 0 and, as a result, E(y|x) = f(x).  Usually, very few restrictions or assumptions are made about the 

properties of f.  In particular, f is not assumed to take a particular parametric form such as a multivariate polynomial 

involving the elements of x.  Sometimes f is assumed to be “smooth” in the sense that certain continuity restrictions 

are imposed on f and possibly its derivatives. 
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To facilitate the introduction of the concept of smoothing, x is initially assumed to be univariate and smoothing 

is discussed in this context (Sect. 3.1); that is, the relation in Eq. (3.1) is assumed to be of the form y = f(x) + ε.  

Such univariate smoothing is often referred to as scatterplot smoothing.  Next, the concept of degrees of freedom in 

association with smoothing is discussed (Sect. 3.2).  Then, multivariate smoothing is described for relationships of 

the form in Eq. (3.1); that is, for the case where x is a vector rather than a scalar (Sect. 3.3).  Finally, hypothesis test-

ing for variable importance in nonparametric regression is discussed (Sect. 3.4). 

3.1  Univariate Scatterplot Smoothers 

The following provides a brief overview of scatterplot smoothing.  More information is available in several ref-

erences.121-124  As previously indicated, scatterplot smoothers are used when there is one independent variable (i.e., 

x) and one dependent variable (i.e., y).  Specifically, a data set of the form (xi, yi), i = 1, 2, …, nS, is under considera-

tion throughout this section.  As suggested by the name, scatterplot smoothing involves fitting a curve to the data 

represented in a scatterplot.  There are many ways to construct (i.e., fit) such a curve.  The most familiar approach to 

such construction is simple linear regression (Sect. 2.1), although this approach is hardly nonparametric.  In contrast 

to the parametric character of linear regression, the following nonparametric approaches to scatterplot smoothing are 

introduced:  running means (Sect. 3.1.1), locally weighted means (Sect. 3.1.2), locally weighted regression (Sect. 

3.1.3), and smoothing splines (Sect. 3.1.4). 

3.1.1  Running Means 

With running means, or possibly running medians, the predicted (i.e., estimated) value 0ˆ( )y x  of y(x0) at a value 

x0 of x is given by the mean (or median) of the yi’s associated with xi’s close to x0.  Typically, a fixed number r of 

values for xi is selected for use.  Then, 0ˆ( )y x is defined on the basis of the r values for xi that are closest to x0.  For 

running means, this leads to the following approximation for an arbitrary value of x: 

( ) ( ) ( ) ( )0,
1

1ˆˆ ,
nS

i id xr
i

y x f x I x x y
r ⎡ ⎤⎣ ⎦

=
= = −∑  (3.2) 

where dr(x) denotes the distance along the x-axis to the rth nearest neighbor of x (i.e., r values of xi satisfy |xi − x| ≤ 

dr(x)) and 

( ) ( ) ( )
0,

1 if 0
0 otherwise.

i r
id xr

x x d x
I x x⎡ ⎤⎣ ⎦

⎧ ≤ − ≤
− = ⎨

⎩
 (3.3) 

A minor modification is required if multiple observations satisfy |xi − x| = dr(x) (e.g., increase the value for r to in-

corporate these values or leave r fixed and average the corresponding yi values).  An analogous relationship holds 

for running medians except that medians over the yi’s associated with the r xi’s closest to x are calculated rather than 

means. 
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Although running means or medians are appealing because of their simplicity, they tend to produce a very wig-

gly function ˆ ( )f x .  Specifically, as the values for x move along the x-axis, the sets of xi’s in use change, with these 

changes resulting in discontinuities in ˆ ( )f x .  This behavior is illustrated in Fig. 5 for running means with the previ-

ously introduced two-phase flow data and r = 20. 

3.1.2  Locally Weighted Means:  Kernel Smoothers 

Smoothing based on locally weighted means is employed to keep the intuitively appealing idea of a moving av-

erage while, concurrently, producing less small-scale erratic behavior in ˆ ( )f x .  Specifically, locally weighted aver-

aging with a kernel function k(z; h) produces the approximation 

( ) ( ) ( )
1 1

ˆ ; ; .
= =

= − −∑ ∑
nS nS

i i i
i i

f x k x x h y k x x h  (3.4) 

The role of k(z; h) is to place more weight on the yi’s associated with xi’s close to x and less weight on yi’s associ-

ated with xi’s farther away from x.  The kernel function k(z; h) is usually chosen to have a maximum at z = 0 and to 

decrease monotonically to zero as |z| increases.  If k(z; h) is a continuous function of z, then ˆ ( )f x  will be a continu-

ous function of x.  The bandwidth h, also known as the smoothing parameter, determines the amount of smoothing 

to be done to the data.  Larger values of h result in more smoothing and smaller values of h result in greater fidelity 

to the data.  A commonly used kernel function is 

( ) ( ) ( )2 2; 1 2 exp 2 ,k z h h z hπ= −  (3.5) 

which corresponds to the normal density function with µ = 0 and σ = h.  Other viable choices for k(z; h) also exist  

(e.g., see Sect. 2.6, Ref. 121).  As discussed in more detail in Sect. 3.2, there is no universally accepted approach to 

determining the best value for h for a given kernel function and data set.  However, it is widely accepted that the 

choice of the bandwidth h has more effect on the smoothing process than the choice of the kernel function (p. 19, 

Ref. 121). 

The use of a kernel smoother with the kernel function in Eq. (3.5) and a bandwidth of h = 0.6 is illustrated in 

Fig. 6.  Comparison of Figs. 5 and 6 illustrates the smoother form for ˆ ( )f x  produced by the use of locally weighted 

means than is the case for running means. 

Kernel smoothers are “linear smoothers” in the sense that  

1 2
ˆ ˆ ˆˆ [ ( ), ( ), , ( )]TnSf x f x f x= …y   (3.6) 

can be represented by 
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ˆ ,=y Sy  (3.7) 

where y = [y1, y2, …, ynS]T and the ith row of the matrix S contains the kernel weights in the linear combination in 

Eq. (3.4).  Specifically, the value in row i and column j of S is  

( ) ( )
1

; ;
nS

ij j i k i
k

s k x x h k x x h
=

= − −∑ ,  (3.8) 

which is the weight on the jth observation for prediction at xi. 

Edge effects are a potential drawback with locally weighted means.  Such effects can be manifested near the 

largest and smallest observed values for x and result because of the unequal numbers of observations to the left and 

right of such values.  Specifically, there are few observations to the left of small values for xi and few observations 

to the right of large values for xi.  This imbalance in the number of observations can result in an overemphasis in the 

averaging process of observations on one side of such values and thus distort ˆ ( )f x  for values of x near the upper or 

lower ends of the range of values for the xi.  This effect can be seen for the smaller values of x = BHPRM in Fig. 6, 

where the value for ˆ ( )f x  determined with locally weighted means appears to fall below the overall trend of the data. 

3.1.3  Locally Weighted Regression 

An approach similar to the kernel smoother (Sect. 3.1.2) that reduces the problem of edge effects involves the 

use of a locally weighted regression line.125  With locally weighted regression, 

( ) ( ) ( )ˆ ˆˆ ,f x x x xα β= +  (3.9) 

where ˆ ( )xα  and ˆ( )xβ  are estimated for individual values of x.  In particular and for a specific value of x, the quan-

tities ˆ ( )xα  and ˆ( )xβ  are defined to be the values for α and β that minimize the sum 

( ) ( )2

1
; ,α β

=
+ − −∑

nS

i i i
i

x y k x x h  (3.10) 

where k(x − xi; h) is an appropriately defined kernel function.  The indicated minimization of α and β is straightfor-

ward with an appropriate matrix formulation of the problem (p. 84, Ref. 124).   

Locally weighted regression is actually equivalent to the determination of a locally weighted mean (Sect. 3.1.2) 

with a complicated kernel function that derives from the estimation of ˆ ( )xα  and ˆ( )xβ .  This kernel function will not 

be given here but can be found elsewhere (p. 241, Ref. 126).  Thus, locally weighted regression is also a linear 

smoother as it can be put in the form ŷ = Sy indicated in Eq. (3.7). 
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Both kernel smoothing of the mean and locally weighted regression have a problem when data are sparse in a 

particular region.  In this situation, there are few points close to some x values to use in the averaging process and, 

depending on the kernel in use, ˆ ( )f x  may not even be defined for such x values.  Cleveland recognized this prob-

lem and mitigated its effects by incorporating a nearest neighbors approach with the locally weighted regression 

line.125  This procedure is often referred to by the designator LOESS, which is short for local regression and was 

chosen in allusion to the fact that LOESS is a deposit of fine clay or silt along a river valley and is thus a surface of 

sorts (p. 314, Ref. 127). 

With LOESS, the kernel function is modified to take into account the distance dr(x) to the rth nearest neighbor 

of a point x.  Specifically, Cleveland125 proposed that ˆ ( )xα  and ˆ( )xβ  should be estimated by minimizing the ex-

pression in Eq. (3.10) with the kernel function k(z; h) defined by 

( ) ( ) [ ) ( )
33

0,; 1 ,⎡ ⎤= −⎢ ⎥⎣ ⎦ hk z h z h I z  (3.11) 

where I[0,h)(|z|) is defined analogously to the expression in Eq. (3.3) (i.e., I[0,h)(|z|) = 1 if 0 ≤ |z| < h and 0 otherwise) 

and h corresponds to dr(x).  With this formulation, ˆ ( )xα  and ˆ( )xβ  are defined to be the values for α and β that 

minimize the expression 

( ) ( ){ } ( )) ( )
332

0,
1

1 .
nS

i i i r id xr
i

x y x x d x I x xα β ⎡⎣
=

⎡ ⎤+ − − − −⎣ ⎦∑  (3.12) 

The use of h = dr(x) in the definition of k(z; h) allows the bandwidth to vary along the x-axis.  This assures that r − 1 

of the nS observations will have nonzero weights when computing the local regression line ˆ ( )f x  for each x regard-

less of how sparse the data is.  If several points are tied for being the rth nearest neighbor to x, then there will actu-

ally be less than r − 1 points with nonzero weight for this special case.  An analysis employing LOESS is often 

described by its span, which is the ratio r/nS.  Intuitively, the span is the ratio of the number of observations with 

nonzero weight used in the estimation of ˆ( )xα  and ˆ( )xβ  to the total number of observations although this is not 

quite correct as only r − 1 observations typically have nonzero weight. 

The improvement in the estimate of ˆ ( )f x  with LOESS over the estimate obtained with locally weighted means 

can be seen by comparing the results in Figs. 6 and 7.  In particular, the estimate for ˆ ( )f x  in Fig. 7 is obtained from 

LOESS with r = 60 and a corresponding span of 0.20.  This estimate tracks the data near the ends of the range for x 

= BHPRM more faithfully than is the case for ˆ ( )f x  in Fig. 6 obtained with locally weighted means.  This is particu-

larly evident for the smaller values of x.  Due to its good performance, LOESS has become one of the most popular 

scatterplot smoothers. 
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3.1.4  Smoothing Splines 

Another popular scatterplot smoother is the cubic smoothing spline.  A cubic smoothing spline is a function f̂  

that minimizes the penalized residual sum of squares 

( ) ( )
22 2 2

1

ˆ ˆd d d
=

⎡ ⎤⎡ ⎤− +⎣ ⎦ ⎣ ⎦∑ ∫
nS b

i i a
i

y f x f x x xλ  (3.13) 

over all continuously differentiable functions f, where a ≤ x(1) = min{xi: 1 ≤ i ≤ nS}, max{xi: 1 ≤ i ≤ nS} = x(nS) ≤ b, 

and λ is a constant (Sect. 2.10, Ref. 121).  The first term in the preceding expression is the residual sum of squares 

and measures fidelity to the data; the second term constitutes a penalty for f̂  having too much curvature. 

There is a unique, explicit solution to the minimization problem associated with Eq. (3.13).  This solution is a 

natural cubic polynomial spline with knots (i.e., locations of change in the structure of the spline) at the observed 

values for x (Sect. 2.10, Ref. 121).  A cubic polynomial spline is a function that is a cubic polynomial on any inter-

val defined by adjacent knots, has two continuous derivatives, and has a third derivative that is a step function with 

jumps at the knots.  A natural cubic spline is a cubic spline that is restricted to be linear on (−∞, x(1)) and (x(nS), ∞). 

The quantity λ in Eq. (3.13) plays the role of a smoothing parameter.  As with the smoothing parameters associ-

ated with the previously introduced methods, the appropriate value to use for λ is not intuitively apparent.  Typi-

cally, the equivalent degrees of freedom (df) described in the next section (Sect. 3.2) is used to determine the value 

for λ for smoothing splines.  Fig. 8 shows a cubic smoothing spline involving BHPRM with df = 8.  As comparison 

of Figs. 7 and 8 shows, the behavior of this cubic smoothing spline is similar to that of LOESS. 

3.2  Equivalent Degrees of Freedom and Smoothing Parameters 

Automated methods of selecting smoothing parameters for the techniques presented in Section 3.1 are now dis-

cussed.  To do this, the related topic of degrees of freedom is introduced.  In linear model theory, the degrees of 

freedom df of a model is defined to be the number of linearly independent columns in the design matrix X defined in 

Eq. (2.6).  This is the same as the number of parameters included in the associated linear model.  An equivalent 

definition is 

( )df tr= H , (3.14) 

where H = X(XTX)−1XT, often called the hat matrix, is the perpendicular projection matrix that projects a vector 

onto the X space (i.e., the space spanned by the vectors corresponding to the columns in X) and tr(H) denotes the 

trace of H (i.e., the sum of the diagonal elements of H).  Predicted values for the linear model y = Xβ are obtained 

from the relationship ŷ = Hy.  More on the projection matrix H can be found elsewhere (p. 68, Ref. 128; p. 393, Ref. 

129). 
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The nonparametric techniques discussed in Sects. 3.1.1 – 3.1.3 can be put in the form ŷ = Sy indicated in Eq. 

(3.7).  Such techniques are said to be linear.  For convenience, S is referred to as the smoother matrix.  The symbol 

S is used to denote the smoother matrix to distinguish it from H since S is not, in general, a perpendicular projection 

onto the X space.   A natural generalization of the concept of degrees of freedom is to define the degrees of freedom 

associated with a smoother matrix S to be 

( ) ,df tr= S  (3.15) 

where tr(S) denotes the trace of S.  In turn, the degrees of freedom for error dferr can then be defined by 

( )= −dferr nS tr S  (3.16) 

in analogy to the corresponding definition 

( )= −dferr nS tr H  (3.17) 

for linear models. 

The preceding definitions make some intuitive sense if the two extreme prediction cases, simple averaging and 

interpolation, are considered.  For a simple average, the diagonal elements of S are given by sii = 1/nS.   As a result, 

tr(S) = 1 or, equivalently, one degree of freedom (i.e., df = 1) is being used to estimate the overall mean value.  In 

the interpolation case, sii = 1 and the other weights in a row must be 0 so that the predicted value is given by f̂ (xi) = 

yi.  In this case, each observation has its own value and tr(S) = nS, which implies a model with nS degrees of free-

dom (i.e., df = nS).  Most models fall somewhere in between these two extremes.  Additional discussion of degrees 

of freedom in the context of nonparametric regression is available elsewhere (pp. 52 – 55, Ref. 121). 

Degrees of freedom will be used for inference later in this presentation.  However, degrees of freedom can also 

be used to obtain some insight with respect to appropriate values to use for smoothing parameters.  For a particular 

kernel, a desired value of df for the smoother matrix can be specified, and then the value of the smoothing parameter 

that produces this value can be determined.  This still leaves open the question of what is an appropriate value for df.  

The approaches below offer a better guide to smoothing parameter selection. 

A widely used automatic selection procedure for smoothing parameters is the cross validation (CV) approach.  

With this approach, the jackknifed (or leave one out) residuals are obtained by fitting the model without the ith ob-

servation and then predicting yi.  The deleted residual is then 

( ) ( )ˆ ,ii ir y y= −  (3.18) 



Doc. No. 0507 

 16

where ŷ(i) is the jackknifed (i.e., predicted) value for yi obtained with yi omitted from the prediction process, and the 

predicted residual sum of squares (PRESS)130 is given by 

( ) ( )
22

1 1
ˆ .

= =

⎡ ⎤= = −⎣ ⎦∑ ∑
nS nS

i ii
i i

PRS r y y  (3.19) 

The PRESS value PRS is then used in the selection of the smoothing parameter.  In particular, different values for 

the smoothing parameter result in different values for PRS.  The preferred smoothing parameter value is the value 

that minimizes PRS. 

For representations of the form ŷ = Sy, it is not necessary to fit the model multiple times to obtain the deleted 

residuals.  Instead, all the deleted residuals can be obtained from the usual residuals 

ˆi i ir y y= −  (3.20) 

and the leverage values sii, which are the diagonal elements of S.  In particular, the deleted residuals are given by 

( ) ( ) ( ) ( )ˆ1 1= − = − −i ii i i iiir r s y y s  (3.21) 

(see p. 47, Ref. 121).  This makes cross validation easy to apply for linear smoothing provided S is relatively easy to 

calculate. 

In practice, the preceding cross validation criterion tends to result in the selection of smoothing parameters that 

undersmooth.  To correct for this, a generalized cross validation criterion has been suggested (p. 49, Ref. 121).  This 

generalized criterion employs an adjusted PRESS value given by 

( ) ( )

2 2

1 1

ˆ
1 1= =

⎡ ⎤ ⎡ ⎤−
= =⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑
nS nS

i i i
A

i i

r y y
PRS

tr nS tr nSS S
 (3.22) 

in the determination of the smoothing parameter.  Given that 

( )
1

,
nS

ii
i

tr s
=

= ∑S  (3.23) 

each deleted residual r(i) is in essence being calculated with an average leverage value given by 

( )
1

nS

ii
i

s tr nS s nS
=

= = ∑S . (3.24) 

This approach puts less emphasis on observations with high leverage values.  Another way to write PRSA is 



Doc. No. 0507 

 17

2
2

1

1 ,
1 =

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

∑
nS

A i
i

PRS r
df nS

 (3.25) 

which shows that PRSA can be viewed as the error sum of squares penalized by the degrees of freedom associated 

with the model used in smoothing the data.  With this criterion, the preferred smoothing parameter value is the value 

that minimizes PRSA. 

3.3  Multivariate Smoothers 

More general relationships of the form y = f(x) indicated in Eq. (1.7) are now considered.  Further, a mapping yi 

= f(xi), i = 1, 2, …, nS, from analysis inputs to analysis results as shown in  Eq. (1.8) is assumed to be available for 

analysis.  In this framework, approximations ˆ ( )f x  to a relationship of the form 

( ) ( ) ( )1 2, , ,= = … nXE y f f x x xx x  (3.26) 

are sought.  The kernel methods described for the univariate case in Sect. 3.1 have immediate and straightforward 

generalizations to this multivariate context.  These generalizations are often referred to as multiple predictor tech-

niques.  In particular, the following multiple predictor techniques are considered in this section:  locally weighted 

regression (Sect. 3.3.1), additive models (Sect. 3.3.2), projection pursuit regression (Sect. 3.3.3), and recursive parti-

tioning regression (Sect. 3.3.4). 

3.3.1  Locally Weighted Regression:  LOESS 

The LOESS technique in multiple dimensions is analogous to the same technique in one dimension (Sect. 

3.1.3).  In particular, the relationship between y and x is assumed to be of the form 

( ) ( ) ( ) ,y f α ε= = + +x x β x x  (3.27) 

where β(x) = [β1(x), β2(x), …, βnX(x)], x = [x1, x2, …, xnX]T, and E(ε) = 0.  In turn, an approximate relationship of 

the form 

( ) ( ) ( )ˆˆ ˆŷ f α= = +x x β x x  (3.28) 

is sought with LOESS, with the corresponding one dimensional special case appearing in Eq. (3.9). 

The quantities α̂ (x) and β̂ (x) for a given value of x are defined to be the values for α and β = [β1, β2, …, βnX] 

that minimize the sum 
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( ) ( ) ( )) ( )
33

2
0,

1
1 ,⎡⎣

=

⎡ ⎤⎛ ⎞−⎢ ⎥+ − − −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑
nS

i
i i idrri

y I
d

α x
x x

βx x x
x

 (3.29) 

where (i) dr(x) is the distance to the rth nearest neighbor of x in nX-dimensional Eulidean space, (ii) I[0,dr(x))(||x − 

xi||) is defined analogously to I[0,dr(x))(|x − xi|) in Eq. (3.12), and (iii) the individual independent variables (i.e., x1, 

x2, …, xnX) are normalized to mean zero and standard deviation one so that the value for the norm || ⋅ || is not domi-

nated by the units used for these variables.  The determination of α and β is straightforward with the use of appro-

priate matrix techniques (p. 139, Ref. 122).  Except for use of the norm || ⋅ || instead of absolute value | ⋅ |, the 

expression in Eq. (3.29) with LOESS for multidimensional x is the same as the expression in Eq. (3.12) for the one-

dimensional case. 

The determination of α̂  and β̂ (x) provides an estimate of ŷ for one value of x as indicated in Eq. (3.28).  Esti-

mates of y for additional values of x require the solution of an additional minimization problem for each x.  This 

may seem computationally demanding but LOESS is actually quite fast computationally even with multiple inde-

pendent variables. 

The obvious benefit to using LOESS in multiple dimensions is that it can capture nonlinear behavior that a typi-

cal parametric model cannot.  A more subtle advantage is the capability to capture very general interactions between 

input variables.  The indicated capabilities derive from the property that LOESS is inherently local in its approxima-

tions to the relationship y = f(x).  For example, a LOESS surface fitted to two variables is shown in Fig. 9.  The ac-

tual functional relationship is 

( ) ( ) ( ) ( ){ }2 2
1 2 1 2, 1 2 exp 5 5 2 ,y f x x x xπ ⎡ ⎤= = − − + −⎢ ⎥⎣ ⎦

 (3.30) 

which corresponds to the density function for a bivariate normal distribution.  The surface in Fig. 9 was constructed 

with LOESS and a random sample of size nS = 100 from x = [x1, x2] with x1 and x2 uniform on [0, 10].  In this ex-

ample, LOESS captures the nonlinear interaction between x1 and x2 in the determination of y. 

The LOESS technique in multiple dimensions is also a linear smoother in the sense that it can be expressed in 

the form shown in Eq. (3.7).  The actual form of the kernel function is a generalization of the univariate case given 

in Schimek (p.241, Ref. 126). 

A drawback with LOESS and other local averaging techniques in higher dimensions is that the closest observed 

values xi to the value x under consideration are not necessarily local (i.e., nearby) along the axes for the individual 

variables xj, j = 1, 2, …, nX, contained in x.  This is sometimes referred to as the curse of dimensionality.  To illus-

trate this, first consider one independent variable.  To include 30% of the data in a local average, it is necessary to 

span approximately 30% of the corresponding axis if the variable values are approximately uniformly distributed.  
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With the same distributional assumption and two independent variables, including 30% of the data now requires 

spanning 55% of the range of each of the variables.  This requirement results because the joint range of the two vari-

ables is now a rectangle and covering 30% of this rectangle requires covering 55% of the range of each of the two 

variables (i.e., (0.55)2 ≅ 0.30).  As the number of independent variables increases, the problem becomes worse.  

With five independent variables, use of 30% of the data requires spanning 79% of the range of each of the individual 

variables.  This hardly constitutes a local average anymore.  The span (i.e., percent coverage) can be made smaller 

but then there is a danger of undersmoothing unless the number of observations is substantially increased. 

The LOESS procedure will work in higher dimensions and actually works quite well for nX ≤ 3.  For nX > 3, 

however, LOESS starts to be affected by the curse of dimensionality.  As will be illustrated later, this can cause 

LOESS to miss the effects of important variables in the estimation of f (Sect. 5). 

Several procedures have been developed in an attempt to overcome the dimensionality problem.  These proce-

dures implement one or more of the following strategies as discussed in subsequent sections:  additive modeling 

(Sect. 3.3.2), dimension reduction (Sect. 3.3.3), and recursive partitioning (Sect. 3.3.4). 

3.3.2  Additive Models 

For additive modeling, the function f(x) in Eq. (3.27) is assumed to have the form 

( ) ( )
1

nX

j j
j

f f x
=

= ∑x , (3.31) 

where the fj are arbitrary functions that will be determined as part of the analysis process.  This is analogous to mul-

tiple linear regression where the effects of the independent variables are additive.  The difference is that y = f(x) is 

not assumed to be a linear function of the xj.  This representation is not completely general as it does not allow for 

interactions between the independent variables.  However, nothing prevents the inclusion of multiplicative interac-

tions xrxs as in linear regression. 

Additive models are usually constructed with a method known as backfitting suggested by Friedman and 

Stutzel.131  The algorithm that is used in the software packages R and S-Plus to implement this method is described 

in Chambers and Hastie (p. 300, Ref. 127).  The indicated algorithm is more efficient than the approach that is de-

scribed below.  However, the described approach provides a more intuitive introduction to the ideas involved in ad-

ditive model construction. 

The observed values for y are assumed to be of the form 

( ) ( )
1

.
nX

i i i j ij i
j

y f f xε ε
=

= + = +∑x  (3.32) 
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Given initial estimates 2̂f , 3̂f , …, n̂Xf  for f2, f3, …, fnX, (e.g., ˆ ( )j jf x  = bjxj for j = 2, 3, …, nX, where the bj are 

coefficients from a regression model of the form indicated in Eq. (2.2)), an estimate 1̂f  for f1 can be obtained 

through use of the relationship 

( ) ( )1 1
2

ˆ
nX

i j ij i i
j

y f x f x ε
=

− ≅ +∑  (3.33) 

for i = 1, 2, …, nS.  In particular, one of the scatterplot smoothers introduced in Sect. 3.1 can be used to smooth the 

partial residuals on the left hand side of Eq. (3.33) across x1.  This produces an estimate 1̂f  for f1 defined across the 

range of values for x1.  Given this estimate for f1, the estimate 2̂f  for f2 can be refined in the same manner across 

the range of values for x2 with 1̂f , 3̂f , 4̂f , …, n̂Xf .  This procedure then continues and repetitively cycles through 

the variables.  The cycling continues until convergence is achieved.  

The result is ˆ
jf  defined over the range of xj for j = 1, 2, …, nX.  In turn, y = f(x) can be estimated for arbitrary 

values of x = [x1, x2, …, xnX] by 

( )
1

ˆ
nX

j j
j

y f x
=

≅ ∑  (3.34) 

Additional detail is available elsewhere (pp. 90 – 91, Ref. 121; pp. 300 – 302, Ref. 127). 

Additive models can be used to develop representations for complex nonlinear behavior as indicated in Fig. 10 

by the approximation to 

( ) ( ) ( )21 2 1 2, sin 5y f x x x x= = + −  (3.35) 

obtained from a random sample of size nS = 100 from x = [x1, x2] with x1 and x2 uniform on [0, 10].  Additive mod-

els also work well in higher dimensions with a large number of independent variables as will be illustrated in Sect. 

5.  However, successful construction of an additive model is dependent on the actual relationship between y and x 

involving limited interactions between the elements of x. 

The procedure indicated in this section to construct an approximation to the function f(x) in Eq. (3.31) is a lin-

ear smoother provided a linear scatterplot smoother is used in the backfitting algorithm in the sense that this proce-

dure can be formally represented in the form shown in Eq. (3.7).  The smoother matrix S in Eq. (3.7) is difficult to 

compute in a closed form as the overall analysis involves an iterative process.  An approximation to tr(S), which 

corresponds to the number of degrees of freedom associated with the procedure, is given by 

( )
1

,
=

≅ ∑
nX

j
j

tr dfS  (3.36) 
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where dfj is the degrees of freedom used in the scatterplot smoother for xj in the backfitting algorithm (p. 129, Ref. 

121). 

3.3.3  Projection Pursuit Regression 

Projection pursuit regression involves both dimension reduction and additive modeling and is based on the as-

sumption that the function f(x) in Eq. (3.27) has the form 

( ) ( )
1

,
nD

s s
s

f g
=

= ∑x xα  (3.37) 

where αs = [α1s, α2s, …, αnX,s], αs and αt are orthogonal for s ≠ t, x = [x1, x2, …, xnX]T, αsx corresponds to a linear 

combination of the elements of x, and gs is an arbitrary function.  Values for gs, αs and nD are determined as part of 

the analysis procedure.  The expression in Eq. (3.37) is an additive model with the quantities αsx replacing the ele-

ments xj of x as the independent variables.  Further, this expression involves a reduction in dimension as nD is usu-

ally smaller than nX. 

The representation for f in Eq. (3.37) allows for interactions between variables, which is not the case for the ad-

ditive representation in Eq. (3.31).  To see this, consider the example in which x = [x1, x2]T, α1 = [1, 1] and g1(u) = 

u2.  The result is 

( ) ( )2 2 2
1 1 1 2 1 1 2 22 ,g x x x x x x= + = + +α x  (3.38) 

which involves the interaction term x1x2. 

The entities 1α̂ , 2α̂ , …, ˆ nDα  and ĝ1, ĝ2, …, ĝnD are estimated as part of the construction process.  This is ac-

complished by first estimating α1 and g1.  Specifically, 1α̂  and 1ĝ  are defined to be the values for α and gα that 

minimize the sum 

( ) 2

1
,

nS

i i
i

y g
=
⎡ ⎤−⎣ ⎦∑ xα α  (3.39) 

where α ∈ RnX, ||α|| = 1, and gα is the outcome of using a scatterplot smoother (e.g., LOESS; see Sect. 3.1.3) on the 

points [yi, αxi], i = 1, 2, …, nS.  Once 1α̂  and ĝ1 are estimated, the partial residuals yi − ĝ1( 1α̂ xi), i = 1, 2, …, nS, 

are used to obtain 2α̂  and ĝ2.  Specifically, 2α̂  and ĝ2 are defined to be the values for α and gα that minimize the 

sum 

( ) ( ){ }2
1 1 1

1
ˆˆ ,

nS

i i
i

y g g
=

− −⎡ ⎤⎣ ⎦∑ x xαα α  (3.40) 
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where α ∈ RnX, ||α|| = 1, α and 1α̂  are orthogonal, and gα is the outcome of using a scatterplot smoother on the 

points [yi – ĝ1 ( 1α̂ x ), αxi], i = 1, 2, …, nS.  This process continues until no appreciable improvement based on a 

relative error criterion is observed.  Unlike additive models, backfitting is typically not used in projection pursuit 

regression. 

The scatterplot smoother typically used at each step in projection pursuit regression is a variable span version of 

LOESS, called the supersmoother (supsmu) in R and S-Plus (p. 318, Ref. 109).  This presentation will actually use 

smoothing splines instead.  Further discussion on smoothing in the context of projection pursuit regression, smooth-

ing parameter selection and determination of the number of projection terms nD is given in Sect. 4.  Additional in-

formation on projection pursuit regression is available elsewhere.131 

As indicated in Eq. (3.37), the outcome of a projection pursuit regression consists of the vectors αs defined for s 

= 1, 2, …, nD and corresponding functions gs defined for αsx.  Predictions of y = f(x) are then given by 

( )
1

,
nD

s s
s

y g
=

≅ ∑ α x  (3.41) 

for x = [x1, x2, …, xnX]. 

Projection pursuit regression can represent very general situations involving nonlinearity and variable interac-

tions.  Further, it avoids the dimensionality problem by using projection terms and additive modeling.  However, this 

generality can come at a price.  Results in Sect. 5 suggest that projection pursuit regression has a tendency to overfit 

the data by including spurious variables in the model. 

3.3.4  Recursive Partitioning Regression 

Recursive partitioning regression is most commonly known in the form of regression trees.132  A regression tree 

splits the data into subgroups where the observations within each subgroup are more homogeneous than they are 

over the set of all observations.  Then, f(x) in Eq. (3.27) is estimated by the sample mean over each subgroup.  The 

resultant estimate for f is a piecewise constant function, which is also known as a simple function.  More precisely, 

the estimate ˆ ( )f x  is given by  

( ) ( )
1

ˆ ,
=

= ∑
nP

s s
s

f c Ix x  (3.42) 

where (i) As, s = 1, 2, …, nP, are the disjoint sets into which the observed values xi, i = 1, 2, …, nS, are partitioned 

(usually on the basis of the values for yi), (ii) the mean cs over each set As is defined by 

( )∈= ∑s i si s
c y Cx A A  (3.43) 
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with C(As) denoting the cardinality of As, and (iii) Is(x) is the indicator function such that Is(x)  = 1 if x ∈ As and 0 

otherwise.  The use of regression trees in sensitivity analysis is illustrated in Mishra et al.106 

Regression trees can be generalized by replacing the mean cs in Eq. (3.42) with a linear function.  In particular, 
ˆ ( )f x  can be defined by 

( ) ( ) ( )
1

ˆ ˆˆ ,
=

= +∑
nP

s s s
s

f Iαx x xβ  (3.44) 

where ˆsα  + ˆ
sβ x  is the least squares linear fit to the data associated with As and Is is defined the same as in Eq. 

(3.42).  An example of ˆ ( )f x  for a single independent variable is given in Fig. 11.  The individual regressions can 

also be constrained so that the regression lines (in one dimension) and regression surfaces (in two or more dimen-

sions) meet continuously.  Examples for one and two dimensions are given in Figs. 12 and 13. 

The individual regression lines in Figs. 11b and 12b are constructed with a robust regression procedure in which 

the sum of squares is minimized over the middle two quartiles of the deviations from the regression line (see Ref. 

133 for additional information on robust regression). In contrast, the individual regression lines in Figs. 11a and 12a 

are constructed with the traditional least squares procedure in which the sum of squares is minimized over all devia-

tions from the regression line.  The robust regression procedure reduces the effects of large deviations from the 

overall trend in the data.  The effect of this reduction in the examples presented in Figs. 11 and 12 is to produce re-

gression lines that more closely match a visual impression of the trends in the data.  The visually appealing nature of 

the results in Figs. 11b and 12b suggests that robust regression procedures could have a useful role to play in sensi-

tivity analysis due to their effectiveness in reducing the influence of outliers.  Although all of the least squares pro-

cedures in this presentation are carried out in the traditional manner, the use of robust regression procedures in 

sensitivity analysis is an area that merits additional investigation. 

The linear fit associated with ˆ ( )f x  in Eq. (3.44) reduces the need to split the data as many times as is typically 

the case when a regression tree is used.  This approach will certainly outperform a regression tree when the relation-

ship between y and the xi’s is close to linear for each partition set As.  The interpretation of the representation for 
ˆ ( )f x  in Eq. (3.44) with the linear fit is perhaps less obvious than the interpretation for ˆ ( )f x  in Eq. (3.42) with 

means.  However, the primary concern in this presentation is constructing close approximations to the function f(x) 

that defines y.  Which independent variables are important in this approximation can be easily determined by ob-

serving the fidelity of ˆ ( )if x  to the corresponding values yi when ˆ ( )f x  is constructed with and without the inclu-

sion of individual independent variables.  In the examples of Section 5.1, the recursive partitioning approach given 

here outperformed the regression tree approach indicated in Eqs. (3.42) and (3.43), particularly in terms of estima-

tion of η2 defined in Eq. (5.13). 
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The determination of the partition sets As, s = 1, 2, …, nP, and the associated function ˆ ( )f x  is now considered.  

Let x(r)j, r = 1, 2, …, nS, represent the sampled values for xj ordered by size (i.e., x(r)j ≤ x(r+1)j for r = 1, 2, …, nS − 

1), and let Arj1 and Arj2 denote the sets defined by 

( ){ }1 :rj i ij r jx x= ≤xA  (3.45) 

and 

( ){ }2 :rj i ij r jx x= >xA  (3.46) 

for r = 1, 2, …, nS and j = 1, 2, …, nX.  A separate linear regression is performed for the set of (yi, xi) pairs associ-

ated with each of the sets Arj1 and Arj2.  Some of the sets will have too few data pairs (i.e., less than nX + 1) to fit a 

linear regression model and are excluded from consideration.  This results in a total of nX(nS − 2nX − 1) pairs [Arj1, 

Arj2] that are candidates to define initial values for A1 and A2. 

The pair [Arj1, Arj2] with regressions that together provide the best representation for y are selected as the initial 

values for A1 and A2.  This determination is made on the basis of the R2 value given by 

2 rj
rj

SST SSE
R

SST
−

=  (3.47) 

for each pair [Arj1, Arj2], where 

( )

( ) ( )

2
2

1 1 1

1 2

,

,

nS nS nS

i i i
i i i

rj rj rj

SST y y y y nS

SSE SSE SSE
= = =

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟

⎝ ⎠

= +

∑ ∑ ∑

A A

 

and SSE(Arj1) and SSE(Arj2) denote the error sum of squares for the linear regressions associated with Arj1 and Arj2, 

respectively.  The selection 

[ ]1 2 1 2, ,rj rj⎡ ⎤= ⎣ ⎦A A A A  (3.48) 

is then made for the pair [Arj1, Arj2] that has the largest value for 2
rjR . 

With initial values for A1 and A2 determined, consideration is given to splitting A1 and A2 into two subsets to 

produce three sets of xi values.  This involves consideration of triples of sets of the form [U1, V1, A 2] and [A 1, U2, 

V2], where (i) U1 and V1 correspond to subsets of A1 obtained in a manner analogous to that used in the definition 

of A rj1 and A rj2 and (ii) U2 and V2 correspond to subsets of A 2 also obtained in a manner analogous to that used in 

the definition of A rj1 and A rj2.  A triple of sets [B1, B2, B3] is then defined that is equal to the [U1, V1, A 2] or [A 1, 
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U2, V2] triple that has the highest R2 value obtained in a manner analogous to that described in conjunction with Eq. 

(3.47) except that results obtained from regressions involving three sets are involved.  This process of constructing 

additional sets is then continued in an analogous manner until further splitting would not be beneficial as determined 

by some stopping criterion. 

Prediction of y = f(x) for arbitrary values of x is straightforward once the construction process to obtain As, ˆsα  

and ˆ
sβ  is complete.  Specifically, the desired prediction follows directly from Eq. (3.44). 

Since the determination of the partition regions is data driven (i.e., based on the observed y values), the 

smoother matrix S for recursive partitioning regression depends on the y values and is hence not a linear smoother. 

Because of this, an equivalent degrees of freedom is hard to define.  However, a possible definition is to use the de-

grees of freedom from the model obtained as if the partitions had been specified a priori, and then add a certain 

number of degrees of freedom for each partition.   

If the partitions were known a priori, then the smoother matrix derives from the regression analyses carried out 

for each set As, s = 1, 2, …, nP, and can be constructed from the design matrices Xs associated with these regres-

sions (see Eq. (2.6)).  In particular, S is constructed from the matrices 

( ) 1−
= T T

s s s s sH X X X X  (3.49) 

and has the form 

1

2

0 0
0 0

0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

…
…

# # #
" nP

H
H

S

H

 (3.50) 

when the rows of X are rearranged so rows that correspond to elements of As are next to each other.  Further, the 

degrees of freedom for the model with the sets As specified a priori is 

( ) ( )
1

,
nP

ap s
s

df tr tr
=

= = ∑S H  (3.51) 

which corresponds to the number of degrees of freedom associated with S.  Given that the regression for each set As 

involves the determination of nX + 1 parameters (i.e., the coefficients in the regression model), tr(Hs) = nX + 1; as a 

result, 

( )1apdf nP nX= +  (3.52) 
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is the degrees of freedom for S. 

However, as the sets As, s = 1, 2, …, nP, are not specified a priori, additional degrees of freedom are involved 

in the estimation of these partitions.  Since the complexity of the partitioned regions increases with the number of 

independent variables, each additional partition can be viewed as involving another nX degrees of freedom.  As a 

result, 

( )1 ( 1)df nP nX nX nP= + + −  (3.53) 

is an estimate of the degrees of freedom for the entire recursive partitioning model. 

In our experience this rule works quite well for determining equivalent degrees of freedom for the recursive par-

titioning procedure described above.  Additional discussion about equivalent degrees of freedom for adaptive or 

“data driven” approaches such as recursive partitioning and Multivariate Adaptive Regression Splines (MARS) is 

given in Hastie et al.134 

Determining the number of sets A1, A2, …, AnP to use in recursive partitioning regression is analogous  to 

choosing the smoothing parameter in previously described methods.  Therefore, a reasonable approach is to deter-

mine a stopping point in the partitioning process with a criterion similar to that used for the selection of a smoothing 

parameter such as cross validation or generalized cross validation (Sect. 3.2).  With cross validation, the PRESS 

value PRS is calculated as indicated in Eq. (3.19); similarly, with generalized cross validation, the adjusted PRESS 

value PRSA is calculated as indicated in Eqs. (3.22) and (3.25).  Then, if PRSs, s = 1, 2, …, and PRSAs, s = 1, 2, …, 

represent values for PRS and PRSA, respectively, calculated at successive steps in the partitioning process, an appro-

priate stopping point would be the last step before these values begin to increase as such an increase is indicative of 

an overfitting of the data. 

As is the case for LOESS (Sect. 3.3.1), additive models (Sect. 3.3.2), and projection pursuit regression (Sect. 

3.3.3), recursive partitioning regression can model very general nonlinear relationships.  It also models very general 

interactions and performs well in higher dimensions.  Unlike projection pursuit regression, the results in Sect. 5 do 

not indicate a tendency to overfit the data.  However, these desirable properties come at a cost as recursive partition-

ing regression can require an order of magnitude more computational effort than the other indicated methods. 

3.4  Hypothesis Testing for Variable Importance 

A number of possibilities exist for hypothesis testing for smoothing methods, including the use of approximate 

distributions and bootstrapping.123  For reasons of computational efficiency, the following approach to hypothesis 

testing is practicable for use in sensitivity analyses employing stepwise nonparametric regression and is used in this 

presentation for that reason. 
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It is desired to compare results (i.e., estimates of y) obtained with a model constructed from n independent vari-

ables (i.e., variables corresponding to n different elements of x = [x1, x2, …, xnX]) with results obtained from a 

model constructed without one of these n variables, say xj.  The goal is to test the following hypotheses: 

H0: Results obtained with and without the inclusion of xj are the same. 

Ha: Results obtained with the inclusion of xj are different from the results obtained with the exclusion of xj. 

If H0 can be rejected in favor of Ha, then xj is an important variable and should be included in the model being con-

structed by the smoothing process. 

The usual test statistic for choosing between H0 and Ha for linear models is 

( ) ( )
* R F F R

F F

SSE SSE df df
F

SSE df
− −

= , (3.54) 

where SSER and dfR are the error sum of squares and degrees of freedom for the reduced model (i.e., the model 

without xj) and SSEF and dfF are defined similarly for the full model (i.e., the model with xj included) (Ref. 135, 

p. 169; Ref. 136, Sect. 4.4).  In the testing of linear models with normally distributed data, F* has an F-distribution 

with m = dfF − dfR and n = dfF degrees of freedom when H0 is true.  As a result, a p-value equal to prob(F > F*|H0) 

can be used to test H0 against Ha, where prob(F > F*|H0) is the probability that a value F for the F-statistic greater 

than F* will be obtained by chance if the null hypothesis H0 is satisfied. 

The statistic F* in Eq. (3.54) can also be defined for models with n − 1 and n variables constructed in a smooth-

ing process with dfR and dfF defined by 

( ) ( ) and ,R R F Fdf tr dF tr= =S S  (3.55) 

where SR and SF are the smoother matrices associated with the reduced model (i.e., the model without xj) and the 

full model (i.e., the model with xj included), respectively.  Unfortunately, the true distribution for F* is not known 

for any of the smoothing methods considered in this presentation.  However, the distribution for F* for these 

smoothing methods can be approximated by an F-distribution with dfF − dfR and dfF degrees of freedom (i.e., Frs 

with r = dfF − dfR and s = dfF; see pp. 66 – 67, Ref. 121). 

Determination of whether or not a particular variable should be included in a smoothing process can be made by 

fitting the associated model with and without the variable and then performing the appropriate F test.  This is par-

ticularly useful in sensitivity analysis where the objective is to identify the important variables.  

Performance of a comprehensive robustness study of this approach would be very beneficial.  Our experience 

with the results contained in this presentation indicates that the approach is quite reasonable.  Other approximate 
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tests for H0 are also available (pp. 87 – 89, Ref. 123); however, none of these tests are exact.  Fortunately, such tests 

in and of themselves do not have a large bearing on which variables are identified as being important in the stepwise 

procedures described in this presentation.  Rather, it is the contribution of a variable to the model R2 value that 

serves as the metric for variable importance (see discussion of R2 in Sect. 5.1).  Hypothesis testing merely serves as 

a model building tool in the stepwise variable selection discussed in Sect. 4.1. 

4.  Implementation of Smoothing Methods for Sensitivity Analysis 

Explanations are now given on how the different smoothing methods for surface approximation can be used in 

sensitivity analysis.  Details about the forward (i.e., stepwise) model building process and smoothing parameter se-

lection are given.  In particular, the following topics are considered in the context of sensitivity analysis:  stepwise 

variable selection (Sect. 4.1), traditional regression methods (Sect. 4.2), locally weighted regression, i.e., LOESS 

(Sect. 4.3), generalized additive models (Sect. 4.4), projection pursuit regression (Sect. 4.5), and recursive partition-

ing regression (Sect. 4.6).  All of the techniques discussed here and used in the examples of Ref. 107 were imple-

mented using the R language, which is an open source language very similar to S-Plus. 

4.1  Stepwise Variable Selection 

For purposes of sensitivity analysis, all of the presented regression (i.e., smoothing) methods can be imple-

mented with a forward stepwise variable selection procedure.  An approach of this type is essential for sensitivity 

analyses as there are usually a large number of uncertain analysis inputs under consideration (e.g., nX ≅ 150 in the 

NUREG-1150 probabilistic risk assessments,55, 137-140 nX ≅ 60 in the compliance certification application for the 

Waste Isolation Pilot Plant,141 and nX ≅ 250 in an analysis for the proposed Yucca Mountain facility for the disposal 

of high level radioactive waste142, 143).  Nonparametric regression techniques are not suitable for constructing mod-

els that contain a large number of independent variables unless the sample size is very large.  Hence, it is essential to 

have a method that does not include all the variables under consideration in a model at once.  Further, the order in 

which variables are selected in an appropriately designed stepwise procedure provides important sensitivity informa-

tion. 

A forward stepwise selection procedure operates in the following manner.  A single variable model is con-

structed using each of the independent variables.  Thus, if nX independent variables are under consideration, this 

results in the construction of nX single variable models.  The variable, say 1x� , associated with the best of these mod-

els is identified and retained.  Then, two variable models are constructed using 1x�  and each of the remaining nX − 1 

variables.  This results in the construction of nX − 1 two variable models.  The variable, say 2x� , associated with the 

best of these models is identified and retained.  The process then continues with the construction of three variable 

models with 1x� , 2x� , and the remaining nX − 2 variables, and so on.  This process continues until some stopping 



Doc. No. 0507 

 29

criterion is reached that indicates that no additional predictive capability is provided by models with additional vari-

ables. 

Two important questions are left unanswered in the preceding paragraph:  (i) What determines which model, 

and hence which variable, is best in a set of models?, and (ii) What is an appropriate stopping criterion?  The best 

model is usually determined on the basis of a p-value (Sect. 3.4).  The variable associated with the model with the 

smallest p-value is considered to provide the most predictive capability and is thus the variable retained for use in 

the next step in the model construction process.  The p-value is also used to provide a stopping criterion.  In particu-

lar, when the minimum p-value over all models is greater than some cutoff value (e.g., 0.02), no variable is selected 

and the model construction process terminates with the model constructed at the preceding step. 

Variable selection can also be based on the PRESS statistic (see Eq. (3.19)).  At each step in the selection proc-

ess, the variable whose inclusion results in the smallest PRESS value is the variable retained.  If the minimum 

PRESS value at a step is larger than the minimum PRESS value of the preceding step, then no variable is selected 

and the model construction process terminates with the model constructed at the preceding step.  Other selection and 

stopping criteria are also possible, including Akaike’s information criterion (p. 158, Ref. 121), adjusted R2 values 

(described in Sect. 2 of Ref. 107), and the adjusted PRESS statistic (described in Sect. 3.2).  An enhancement of the 

forward selection procedure is to allow for the possibility of a previously selected variable being dropped from the 

modeling process if it no longer contributes significant predictive capability as additional variables are selected and 

included in the model. 

Backward stepwise selection involves fitting a model with all nX variables.  Then, unimportant variables are se-

quentially removed until the removal of additional variables reduces the predictive capability of the model.  At this 

point the process is terminated.  This selection procedure is not appropriate for sensitivity analysis with nonparamet-

ric regression models for two reasons.  First, the construction of nonparametric regression models with a large num-

ber of variables is not possible with relatively small sample sizes.  Second, the backward selection procedure is not 

useful for identifying the importance of individual variables, which is the primary goal of sensitivity analysis.  In 

contrast, a well designed forward selection procedure identifies the most important variable at the first step, then the 

next most important variable at the second step, and so on. 

The example sensitivity results presented in Ref. 107 use a p-value criterion (Sect. 3.4) for both individual vari-

able selection and termination of the model construction process.  Preliminary results indicated that use of a PRESS 

criterion was too computationally demanding for some of the regression methods and also resulted in models that 

tended to overfit the data.  Our experience is that using either the p-value with a cutoff of σ = 0.02 or the adjusted 

PRESS statistic PRSA for model selection usually results in the same model. 
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4.2 Traditional Regression: Linear Regression (LIN_REG), Rank Regression 
(RANK_REG) and Quadratic Regression (QUAD_REG) 

Each of the traditional regression approaches (i.e., LIN_REG, RANK_REG and QUAD_REG) can be imple-

mented the same way with a forward stepwise selection procedure and a p-value criterion of α = 0.02 (Table 1).  

The forward selection procedure with QUAD_REG requires some additional explanation as there are many ways to 

structure this procedure to incorporate variable interactions and squares.  The approach taken is to consider a vari-

able, its square, and all two-way interactions at each step of the selection procedure.  Thus, if 1x�  is the first variable 

selected, then the corresponding model would be of the form 

2
0 1 1 11 1

ˆ ˆ ˆˆ .y x xβ β β= + +� �  (4.1) 

Then, if 2x�  is the second variable selected, the corresponding model would be of the form 

2 2
0 1 1 2 2 12 1 2 11 1 22 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ,y x x x x x xβ β β β β β= + + + + +� � � � � �  (4.2) 

and so on. 

4.3  Locally Weighted Regression:  LOESS 

The forward stepwise procedure with LOESS can be implemented with a two stage variable selection process at 

each step (Table 2).  First, multiple spans (i.e., r/nS, where r − 1 is the number of points averaged over and nS is the 

sample size; see Sect. 3.1.3) are considered for each candidate variable, and a LOESS model is constructed for each 

span.  Specifically, models are constructed for the following spans:  10, 0.7, 0.3, 0.1, 0.07 and 0.05, where 10 is 

simply an indicator for the use of a linear regression model.  This results in five models for each candidate variable.  

Then, the “best” of these five models is selected on the basis of generalized cross validation using the adjusted 

PRESS value PRSA defined in Eqs. (3.22) and (3.25).  This produces one selected model (i.e., the model with the 

smallest value for PRSA) for each candidate variable.  Second, the “best” of the selected models for the individual 

candidate variables is identified with the approximate hypothesis test indicated in conjunction with Eqs. (3.54).  

Specifically, the model with the smallest p-value is identified, and the associated candidate variable is the variable 

selected at that step in the stepwise procedure.  The procedure terminates with no variable selected if all p-values 

exceed α = 0.02. 

The flexibility provided by the different choices for span causes a potential problem with the approximate hy-

pothesis test indicated in conjunction with Eq. (3.54).  In particular, adding a variable to an existing model could 

result in a new model with the same or fewer degrees of freedom.  This can happen if the span selected for the new 

model is much larger than the span for the previous model.  This possibility exists because smaller spans produce 



Doc. No. 0507 

 31

more complex models and thus result in models with larger numbers of equivalent degrees of freedom.    In turn, this 

would result in the numerator degrees of freedom (i.e., dfF − dfR) for the F statistic in Eq. (3.54) being less than zero. 

This problem is handled in the following manner with SSER, SSEF, dfR and dfF defined as in Eq. (3.54): 

(i)  If dfF > dfR, define the p-value with the F test as usual and test against α. 

(ii)  If dfF − dfR = 0, then define the p-value by 

0 if 
-value

1 if 
F R

F R

SSE SSE
p

SSE SSE
<⎧

= ⎨ ≥⎩
 (4.3) 

and test against α. 

(iii) If dfF ≤ dfR, a p-value is defined with an F test involving 

( ) ( )* F R R F

R R

SSE SSE df df
F

SSE df
− −

= , (4.4) 

which is the original F statistic (see Eq. (3.54)) with the roles of the two models (i.e., the reduced or old model and 

the full or new model) reversed.  The new variable should be added to the model only if evidence exists that the re-

sultant model is better than the previous model.  Such evidence is provided if the new model results in a significant 

reduction in the degrees of freedom (i.e., dfR − dfF > 0) without significantly increasing the error sum of squares 

(i.e., if SSEF − SSER is “small”).  The preceding implies that the old model should be rejected in favor of the new 

model for sufficiently small values of F* as defined in Eq. (4.4).  In particular, the associated p-value is given by 

prob(F < F*) for an F distribution with m = dfR − dfF and n = dfR degrees of freedom.  For the special case SSEF – 

SSER ≤ 0, the corresponding p-value is assumed to be zero.  The usual test against α is made (i.e., the new model is 

accepted if the resultant p-value is less than α).   

4.4  Generalized Additive Models (GAMs) 

Additive models are now considered.  Such models are designated as GAMs (generalized additive models) after 

the gam function in the R and S-Plus languages (p. 252, Ref. 121).  The descriptor “generalized” is used to indicate 

fitting of a discontinuous response.  The designator GAM is used to be consistent with the gam function in R and S-

Plus. 

Similarly to the forward stepwise procedure with LOESS (Table 2), the forward stepwise procedure with GAMs 

can be implemented with a two stage variable selection process at each step (Table 3).  First, multiple additive mod-

els are constructed for each candidate variable, and the “best” of these models is selected for each candidate vari-

able.  Second, the “best” of the selected models for the individual variables is identified with the approximate 
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hypothesis test indicated in conjunction with Eq. (3.54).  Specifically, the model with the smallest p-value is identi-

fied, and the associated candidate variable is the variable selected at that step.  The process terminates with no vari-

able selected if all p-values exceed α = 0.02. 

An additive model is constructed by repeatedly smoothing residuals across one independent variable at a time 

(Sect. 3.3.2).  In concept, any scatterplot smoother could be used.  However, the gam function in R and S-Plus is 

restricted to LOESS (Sect. 3.1.3) and/or smoothing splines (Sect. 3.1.4).  Both smoothers usually gave similar re-

sults in some preliminary analyses, but an occasional convergence problem was encountered with LOESS.  There-

fore, smoothing splines are indicated in Table 3 and used in the generation of the GAM results presented in Sect. 5.  

Specifically, at a given step in the stepwise procedure, multiple degrees of freedom are considered (i.e., 1, 2, 4, 7, 

10, 15) for each candidate variable, and a GAM is constructed using smoothing splines for each of these degrees of 

freedom.  This results in six models for each candidate variable.  After this construction, it is then necessary to select 

that “best” of the these six models for each candidate variable. 

The indicated selection is made on the basis of generalized cross validation (Sect. 3.2) employing the adjusted 

PRESS values PRSA (see Eqs. (3.22) – (3.25)).  This criterion for model selection was picked because there is not an 

option associated with the gam function to use cross validation (Sect. 3.2) inside the back fitting algorithm.  Further, 

computing PRESS (see Eq. (3.19)) is difficult because the leverage values sii are not obtainable for a gam fit in R 

and thus cannot be used in a computationally efficient calculation of PRESS (see Eq. (3.21)).  As a result, obtaining 

the PRESS statistic in R would require fitting a model nS times, where nS is the sample size, and then making nS 

predictions.  Thus, use of cross validation with PRESS in the generation of GAMs with R is computationally very 

expensive. 

In contrast, use of generalized cross validation allows a more computationally efficient determination of the 

“best” model associated with each candidate variable (Sect. 3.2).  In particular, deleted residuals are not needed in 

generalized cross validation (see Eq. (3.21)).  Instead, generalized cross validation is based on the adjusted PRESS 

value PRSA, which uses tr(S) in its evaluation (see Eqs. (3.22) – (3.25)).  The value for tr(S) can be estimated as 

indicated in Eq. (3.36).  This estimation requires the degrees of freedom dfj (i.e., 1, 2, 4, 7, 10 or 15) used for each 

variable xj in the scatterplot smoother employed in the backfitting algorithm.  Because the values for dfj are known 

for each GAM constructed for a given candidate variable (see description of backfitting algorithm in Table 3), the 

determination of tr(S) (see Eq. (3.36)) and hence PRSA (see Eq. (3.22)) is straightforward for each of these GAMs.  

In turn, the selected (i.e., “best”) GAM for a given candidate variable is the model with the smallest value for PRSA.  

As already indicated, once the “best” GAM for each variable is identified, the “best” GAM overall is determined on 

the basis of the p-value associated with the approximate hypothesis test in Eq. (3.54), and the variable selected at the 

step under consideration is the variable associated with that model. 
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4.5  Projection Pursuit Regression (PP_REG) 

Similarly to the forward stepwise procedures with LOESS (Table 2) and GAMs (Table 3), the forward stepwise 

procedure with PP_REG can be implemented with a two stage variable selection process at each step (Table 4).  

First, multiple PP_REG models are constructed for each candidate variable, and the “best” of these models is se-

lected for each candidate variable.  Second, the “best” of the selected models for the individual variables is identi-

fied with the approximate hypothesis test indicated in conjunction with Eq. (3.54).  Specifically, the model with the 

smallest p-value is identified, and the associated variable is the variable selected at that step.  The process terminates 

with no variable selected if all p-values exceed α = 0.02. 

The default implementation of PP_REG in the function ppr in R and S-Plus uses a scatterplot smoother called 

supsmu, which is a variable span smoother that usually provides a better fit to data than a fixed span smoother.131  

However, the bandwidth at a particular value for xi depends on the values for y, which makes this smoother nonlin-

ear.  In turn, this makes the equivalent degrees of freedom difficult to define.  Without the degrees of freedom, it is 

difficult to assess the quality of the associated model.  Unfortunately, a high R2 value by itself is not very informa-

tive because there is no way to know if an overfit of the data has occurred.  A possibility is to use the PRESS statis-

tic to assess the quality of the fit, but this can be very time consuming for moderately large samples.  The preceding 

complication is avoided in this study by using the option of employing smoothing splines as the scatterplot smoother 

in ppr with a degrees of freedom δk specified for each smoothing operation (see Table 4).  With this option, the re-

sultant degrees of freedom associated with the smoothing operations can be obtained directly from ppr rather than 

approximated from the δk’s as is done in the stepwise procedure from the construction of GAMs (see Table 3). 

As iterative smoothing operations are applied, the possibility exists that the degrees of freedom will decrease 

when a variable is added to a model.  This situation occurs when the successor model is less complex (i.e., involves 

less smoothing) than the predecessor model.  When this occurs, the procedure described for use in the same situation 

with LOESS is applied (Sect. 4.3). 

4.6  Recursive Partitioning Regression (RP_REG) 

As for LOESS (Table 2), GAMs (Table 3) and PP_REG (Table 4), the forward stepwise procedure with 

RP_REG can be implemented with a two stage variable selection process at each step (Table 5).  First, multiple 

RP_REG models are constructed for each candidate variable, and the “best” of these models is selected for each 

candidate variable.  Second, the “best” of the selected models for the individual variables is identified with the ap-

proximate hypothesis test indicated in conjunction with Eq. (3.54).  Specifically, the model with the smallest p-value 

is identified, and the associated candidate variable is the variable selected at that step.  The process terminates with 

no variable selected if all p-values exceed α = 0.02. 
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For each candidate variable at each step in the partitioning process, it is necessary to investigate a large number 

of possible split points (Sect. 3.3.4).  Each possible split point requires the construction of a regression model.  For 

example, if the partitioning process has reached the point that five variables are under consideration, then each pos-

sible split point requires the construction of a regression model with six parameters.  To reduce the number of re-

quired regression constructions, every observation for a variable is not investigated as a possible split point.  Instead, 

for every variable, a split point is considered at the smallest sampled value possible for use in splitting and then at 

every kth observed value after that up to the largest sampled value possible for use in splitting.  For example, if a 

sample of size nS = 300 is under consideration, k = 3 and the partitioning process has reached the point at which five 

independent variables are under consideration in the regression model construction, then the possible split points for 

the variable xj would be x(6),j, x(9),j, …, x(291),j, x(294),j, where x(i)j, i = 1, 2, …, 300, denotes a rank ordering of the 

observed values for variable xj.  In this example, the smallest possible value for splitting is x(6),j because at least six 

observations are required to estimate the six parameters in the associated regression model.  In the examples pre-

sented in Sect. 5, k = 2 is used when nS = 100, and k = 3 is used when nS = 300. 

As indicated in Table 5, the split point that results in the largest increase in R2 defines the split point to be used 

(see Eqs. (3.47) – (3.48)).  If the adjusted PRESS value PRSA is smaller after the split than before, the split is kept 

and the search continues for the next possible split point.  The construction process continues in this manner until 

PRSA increases after a split, at which point the split is not kept and the model is completed for that step and the par-

ticular candidate variable under consideration.  Then, the F-static and the associated p-value are determined for each 

model constructed at this step in a comparison with the model retained at the preceding step.  As with the other pro-

cedures, a cutoff of α = 0.02 for the approximate p-value is used in the stepwise variable selection procedure (Sect. 

4.1) to determine whether or not a new variable should be retained in the stepwise procedure. 

5.  Summary 

Sampling-based approaches to uncertainty and sensitivity analysis are very popular.  With such approaches, a 

probabilistically-based sample is generated from the distributions that characterize the uncertainty in analysis inputs 

and then the elements of this sample are propagated through the analysis.  The resultant distributions of analysis 

outcomes provide the desired uncertainty analysis as these distributions summarize the uncertainty in analysis out-

comes that derives from uncertainty in analysis inputs.  Further, this propagation provides a mapping between uncer-

tain analysis inputs and analysis outcomes that can be explored with a variety of sensitivity analysis procedures.  

Among the most popular of these procedures is stepwise regression analysis with raw or rank-transformed data.  

Unfortunately, regression analyses with raw data are ineffective when the relationships between analysis inputs and 

analysis outcomes are nonlinear, and regression analyses with rank-transformed data are ineffective when the rela-

tionships between analysis inputs and analysis outcomes are both nonlinear and nonmonotonic. 
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Nonparametric regression procedures constitute a promising alternative to more traditional parametric regres-

sion procedures for use in sampling-based sensitivity analyses that involve relationships between analysis inputs and 

analysis outcomes that are both nonlinear and nonmonotonic.  This promise derives from the local manner in which 

nonparametric regression procedures attempt to match the relationships between analysis inputs and analysis out-

comes.  In contrast, parametric regression procedures attempt to match global relationships between analysis inputs 

and analysis outcomes.  As a result, nonparametric regression procedures can match relationships between analysis 

inputs and analysis outcomes on a smaller scale than is possible with parametric regression procedures. 

The following nonparametric regression procedures with potential for use in sampling-based sensitivity analy-

ses have been introduced and briefly summarized:  (i) locally weighted regression (LOESS), (ii) additive models, 

(iii) projection pursuit regression, and (iv) recursive partitioning regression.  Further, algorithms for the stepwise 

implementation of these procedures in the R language as part of a sensitivity analysis have been described. 

The second part of this presentation107 illustrates the stepwise implementation of these procedures as parts of 

sampling-based sensitivity analyses.  Specifically, the procedures are illustrated with both simple test problems and 

results from a performance assessment for the Waste Isolation Pilot Plant (WIPP).56, 57  As shown by the example 

illustrations, nonparametric regression procedures can yield more informative sensitivity analysis results than can be 

obtained with more traditional parametric regression procedures when nonlinear relationships between analysis in-

puts and analysis outcomes are present. 
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Figure Captions 

Fig. 1. Linear regression on results generated in a sensitivity analysis of a two-phase fluid flow model. 
Fig. 2. Rank regression on an example monotonic relationship. 
Fig. 3. Rank regression on a nonlinear and nonmonotonic relationship generated in a sensitivity analysis of a two-

phase fluid flow model. 
Fig. 4. Quadratic regression on a nonlinear and nonmonotonic relationship generated in a sensitivity analysis of a 

two-phase fluid flow model. 
Fig. 5. Running means with r = 20 on results generated in a sensitivity analysis of a two-phase fluid flow model. 
Fig. 6. Locally weighted means with kernel function k(z; h) in Eq. (3.5) and bandwidth h = 0.6 on results generated 

in a sensitivity analysis of a two-phase fluid flow model. 
Fig. 7. Analysis with LOESS for kernel function k(z; h) in Eq. (3.11) and r = 60 (i.e., a span of 0.20) on results 

generated in a sensitivity analysis of a two-phase fluid flow model. 
Fig. 8. Analysis with smoothing spline with a = x(1),  b = x(nS) and df = 8 (see Eq. (3.13)) on results generated in a 

sensitivity analysis of a two-phase fluid flow model. 
Fig. 9. Example of LOESS surface constructed for y = f(x1, x2) = (1/2π) exp{−[(x1 – 5)2 + (x2 – 5)2]/2}; see Eq. 

(3.27). 
Fig. 10. Example of additive model surface constructed for y = f(x1, x2) = sin(x1) + (x2 − 5)2; see Eq. (3.35). 
Fig. 11.  Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow 

model:  (a) Individual regression lines generated with traditional least squares regression, and (b) Individual 
regression lines generated with robust regression in which the sum of squares is minimized over the middle 
two quartiles of the deviations from the regression line. 

Fig. 12. Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow 
model with individual regression lines constrained to meet continuously:  (a) Individual regression lines 
generated with traditional least squares regression, and (b) Individual regression lines generated with robust 
regression in which the sum of squares is minimized over the middle two quartiles of the deviations from 
the regression line. 

Fig. 13. Recursive partitioning regression constructed for y = f(x1, x2) = sin x1 + (x2 − 5)2 with individual regression 
surfaces constrained to meet continuously; see Eq. (3.35). 



Doc. No. 0507 

 48

 
 TR06-JR001-0 

Fig. 1.  Linear regression on results generated in a sensitivity analysis of a two-phase fluid flow model. 
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Fig. 2.  Rank regression on an example monotonic relationship. 
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Fig. 3. Rank regression on a nonlinear and nonmonotonic relationship generated in a sensitivity analysis of a two-
phase fluid flow model. 
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Fig. 4. Quadratic regression on a nonlinear and nonmonotonic relationship generated in a sensitivity analysis of a 
two-phase fluid flow model. 
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Fig. 5. Running means with r = 20 on results generated in a sensitivity analysis of a two-phase fluid flow model. 
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Fig. 6. Locally weighted means with kernel function k(z; h) in Eq. (3.5) and bandwidth h = 0.6 on results generated 
in a sensitivity analysis of a two-phase fluid flow model. 
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Fig. 7. Analysis with LOESS for kernel function k(z; h) in Eq. (3.11) and r = 60 (i.e., a span of 0.20) on results 
generated in a sensitivity analysis of a two-phase fluid flow model. 
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Fig. 8. Analysis with smoothing spline with a = x(1),  b = x(nS) and df = 8 (see Eq. (3.13)) on results generated in a 
sensitivity analysis of a two-phase fluid flow model. 
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Fig. 9. Example of LOESS surface constructed for y = f(x1, x2) = (1/2π) exp{−[(x1 – 5)2 + (x2 – 5)2]/2}; see Eq. 
(3.27). 
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Fig. 10.  Example of additive model surface constructed for y = f(x1, x2) = sin(x1) + (x2 − 5)2; see Eq. (3.35). 
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 (a) (b) 

Fig. 11.  Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow 
model:  (a) Individual regression lines generated with traditional least squares regression, and (b) Individual 
regression lines generated with robust regression in which the sum of squares is minimized over the middle 
two quartiles of the deviations from the regression line. 

 
 

 
 TR06-JR012-0 TR06-JR019-0 

 (a) (b) 

Fig. 12. Recursive partitioning regression on results generated in a sensitivity analysis of a two-phase fluid flow 
model with individual regression lines constrained to meet continuously:  (a) Individual regression lines 
generated with traditional least squares regression, and (b) Individual regression lines generated with robust 
regression in which the sum of squares is minimized over the middle two quartiles of the deviations from 
the regression line. 
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Fig. 13. Recursive partitioning regression constructed for y = f(x1, x2) = sin x1 + (x2 − 5)2 with individual regression 
surfaces constrained to meet continuously; see Eq. (3.35). 
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Table 1. Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with LIN_REG, 
RANK_REG and QUAD_REG 

Step 1.  Estimate ( )1 j jy f x≅  with regression procedure in use (i.e., LIN_REG, RANK_REG or QUAD_REG) for j 
= 1, 2, …, nX.  For each of the models ( )1 ,j jy f x≅  determine (i) degrees of freedom dfj (i.e., dfj = 2 for LIN_REG 
and RANK_REG and dfj = 3 for QUAD_REG), (ii)  F-statistic Fj for comparison against mean only model, and (iii) 
resultant p-value pj (see Eq. (3.54)).  Variable 1x�  with smallest p-value is selected as most important variable at Step 
1; corresponding model and degrees of freedom are represented by ( )1 1y f x≅ �  and j1df , respectively.  The process 
terminates with no variable selected if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 2.  Estimate ( )2 1,j jy f x x≅ �  with regression procedure in use (i.e., LIN_REG, RANK_REG or QUAD_REG) 
for j = 1, 2, …, nX and 1jx x≠ � .  For each of the models ( )2 1, ,j jy f x x≅ � determine (i) degrees of freedom dfj (i.e., 
dfj = 3 for LIN_REG and RANK_REG and dfj = 5 for QUAD_REG), (ii) F-statistic Fj for comparison against model 

( )1 1y f x≅ �  selected at Step 1, and (iii) resultant p-value pj (see Eq. (3.54)).  Variable 2x�  with smallest p-value is 
selected as most important variable at Step 2; corresponding model and degrees of freedom are represented by 

( )2 1 2,y f x x≅ � �  and j2df , respectively.  The process terminates with no variable selected at Step 2 if all pj are 
greater than a specified cutoff (e.g., α = 0.02). 

Step 3.  Estimate ( )3 1 2, ,j jy f x x x≅ � �  with regression procedure in use (i.e., LIN_REG, RANK_REG or 
QUAD_REG) for j = 1, 2, …, nX, xj ≠ 1x�  and xj ≠ 2x� .  Continue as in Step 2. 

… 

Step N.  Terminate process when no variable satisfies specified cutoff. 
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Table 2.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with LOESS 

Notation:  Variables sk, k = 1, 2, …, 5, represent the candidate spans 10, 0.7, 0.3, 0.1, 0.07 and 0.05 described in 
Sect. 4.3 with s1 = 10 designating the use of linear regression. 

Step 1.  Estimate ( )1 jk j ky f x s≅  with LOESS for j = 1, 2, …, nX and k = 1, 2, …, 6.  For each xj, identify span js�  
that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25)) for the models 

( )1 jk j ky f x s≅ , k = 1, 2, …, 6.  For each of the models ( )1 ,j j jy f x s≅ �  determine (i) degrees of freedom dfj (i.e., 
dfj = tr (SFj), where SFj is the smoother matrix associated with the selected span js�  for xj (see Eq. (3.54) and asso-
ciated discussion in Sect. 3.4), (ii) F-statistic Fj for comparison against mean only model, and (iii) resultant p-value 
pj (see Eq. (3.54) and associated discussion in Sect. 4.3).  Variable 1x�  with smallest p-value is selected as most im-
portant variable at Step 1; corresponding model and degrees of freedom are represented by ( )1 1 1y f x s≅ � �  and j1df , 
respectively.  The process terminates with no variable selected if all pj are greater than a specified cutoff (e.g., α = 
0.02). 

Step 2.  Estimate y ≅ ( )2 1,j j kf x x s�  with LOESS for j = 1, 2, …, nX, 1jx x≠ � , and  k = 1, 2, …, 6.  For each xj, 
identify span js�  that results in smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25)) for 
the models y ≅ ( )2 1,jk j kf x x s� , k = 1, 2, …, 6.  For each of the models y ≅ ( )2 1, ,j j jf x x s� �  determine (i) degrees 
of freedom dfj, (ii) F-statistic Fj for comparison against model ( )1 1 1y f x s≅ � �  selected in Step 1, and (iii) resultant p-
value pj (see Eq. (3.54) and associated discussion in Sect. 4.3).  Variable 2x�  with smallest p-value is selected as 
most important variable at Step 2; corresponding model and degrees of freedom are represented by 

( )2 1 2 2,y f x x s≅ � � �  and j2df , respectively.  The process terminates with no variable selected at Step 2 if all pj are 
greater than a specified cutoff (e.g., α = 0.02). 

Step 3.  Estimate ( )2 1 2, ,jk j ky f x x x s≅ � �  with LOESS for j = 1, 2, …, nX, 1 2,  j jx x x x≠ ≠� � , and k = 1, 2, …, 6.  
Continue as in Step 2. 

… 

Step N.  Terminate process when no variable satisfies specified cutoff. 
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Table 3.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs 

Notation.  Variables λk, k = 1, 2, …, 6, represent candidate smoothing parameters used in smoothing splines (see Eq. 
(3.13)) in the sequential construction of GAMs, with λk resulting in a smoothing process with approximately δk de-
grees of freedom.  Specifically, λ1 ~ δ1 = 1, λ2 ~ δ2 = 2, λ3 ~ δ3 = 4, λ4 ~ δ4 = 7, λ5 ~ δ5 = 10, and λ6 ~ δ6 = 15.  
The actual value used for λk in Eq. (3.13) is determined from the specified value for δk (see Sect. 3.5, Ref. [121] and 
Sect. 7.4.1, Ref. [127]). 

Step 1.  Estimate ( )1 jk j ky f x λ≅  with a smoothing spline on (xij, yi), i = 1, 2, …, nS, for j = 1, 2, …, nX and k = 1, 
2, …, 6.  For each xj, select model ( )1 j j jf x λ�  with smoothing parameter jλ�  from the models ( )1 jk j ky f x λ≅ , k 
= 1, 2, …, 5, that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and 
discussion in Sect. 4.4).  For each of the models ( )1 j j jy f x λ≅ � , determine (i) degrees of freedom (i.e., dfj = jδ� , 
with ~j jλ δ� � ; see discussion in Sect. 4.4), (ii) F-statistic Fj for comparison against mean only model, and (iii) resul-
tant p-value pj (see Eq. (3.54)).  Variable 1x�  with smallest p-value is selected as the most important variable at Step 
1; corresponding model, smoothing parameter, and degrees of freedom are represented by ( )1 1 1y f x λ≅ �� , 1λ�  and 
j

1df , respectively.  The process terminates with no variable selected if all pj are greater than a specified cutoff (e.g., 
α = 0.02). 

Step 2.  Estimate ( )2 1 1, ,jk j ky f x x λ λ≅ ��  through a sequence of smoothing operations for j = 1, 2, …, nX, 1jx x≠ �  
and k = 1, 2, …, 6; see Step 2′ for details.  For each xj, select model ( )2 1 1, ,j j jf x x λ λ� ��  with smoothing parameter 

jλ�  from the models ( )2 1 1, ,jk j ky f x x λ λ≅ �� , k = 1, 2, …, 6, that results in the smallest value for the adjusted 
PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and discussion in Sect. 4.4).  For each of the models 

( )2 1 1, ,j j jy f x x λ λ≅ � �� , determine (i) degrees of freedom (i.e., dfj = 1 jδ δ+� �  with 1 1~λ δ� �  and ~j jλ δ� � ; see discus-
sion in Sect. 4.4), (ii) F-statistic Fj for comparison against model ( )1 1 1y f x λ≅ ��  constructed in Step 1, and (iii) re-
sultant p-value pj (see Eq. (3.54)).  Variable 2x�  with smallest p-value is selected as most important variable at Step 
2; corresponding model, smoothing parameter and degrees of freedom are represented by 

( )2 1 2 1 2, ,y f x x λ λ≅ =� �� � ( )21 1 1f x λ +��  ( )22 2 2f x λ�� , 2λ�  and j2df , respectively, where ( )21 1 1f x λ��  is a smoothed 
estimate of y as function of 1x�  (i.e., ( )21 1 1f x λ��  corresponds to ( ),2 1 1, ,jk l j jF x x λ λ��  in Step 2.4′ for the selected 
values for 2x�  and 2λ� ) and ( )22 2 2f x λ��  is a smoothed estimate of y as a function of 2x�  (i.e., ( )22 2 2f x λ��  corre-
sponds to ( ),2 1 1 1, ,jk l j jF x x λ λ+

��  in Step 2.4′ for the selected values of 2x�  and 2λ� ).  The process terminates with 
no variable selected at Step 2 if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 2′.  Procedure for obtaining smoothed model ( )2 1 1, ,jk j kf x x λ λ��  on the basis of a relative error criterion for 
variable xj, 1jx x≠ � , and smoothing parameter λk in Step 2. 

Step 2.1′.  Estimate ( ) ( )1 1 1 1 1 1, ,jk j kF x x y f xλ λ λ≅ −� �� �  by smoothing on ( )( )1 1 1,ij i ix y f x λ− �� , i = 1, 2, …, nS, with 
a smoothing spline and smoothing parameter λk.  Result is estimate ( )1 1 1, ,i jk i ij ky G x x λ λ≅ =�� ( )1 1 1if x λ +��  

( )1 1 1, ,jk i ij kF x x λ λ�� .   
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Table 3.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs (Continued) 

Step 2.2′.  Estimate ( ) ( )2 1 1 1 1 1, , , ,jk j k jk j kF x x y F x xλ λ λ λ≅ −� �� �  by smoothing on ( )( )1 1 1 1, , ,i i jk i ij kx y F x x λ λ− �� � , 
i = 1, 2, …, nS, with a smoothing spline and smoothing parameter 1λ� .  Then, estimate ( )3 1 1, ,jk j kF x x λ λ ≅��  

( )2 1 1, ,jk j ky F x x λ λ− ��  by smoothing on ( )( )2 1, , ,ij i ij i ij kx y F x x λ λ− �� , i = 1, 2, …, nS, with a smoothing spline 
and smoothing parameter λk.  Result is estimate ( )2 1 1, ,i jk i ij ky G x x λ λ≅ =�� ( )2 1 1, ,jk i ij kF x x λ λ +��  

( )3 1 1, ,jk i ij kF x x λ λ�� . 

Step 2.3′.  Similar to Step 2.2′.  First, estimate ( ) ( )4 1 1 3 1 1, , , ,jk j k jk j kF x x y F x xλ λ λ λ≅ −� �� �  by smoothing on 

( )( )1 3 1 1, , ,i i jk i ij kx y F x x λ λ− �� � , i = 1, 2, …, nS, with a smoothing spline and associated smoothing parameter 1λ� .  
Then, estimate ( ) ( )5 1 1 2 4 1 1, , , ,jk j k jk j kF x x y F x xλ λ λ λ≅ −� �� �  by smoothing on ( )( )4 1 1, , ,ij i jk i ij kx y F x x λ λ− �� , i = 
1, 2, …, nS, with a smoothing spline and associated smoothing parameter λk.  Result is estimate 

( )3 1 1, ,i jk i ij ky G x x λ λ≅ =�� ( ) ( )4 1 1 5 1 1, , , ,jk i ij k jk i ij kF x x F x xλ λ λ λ+� �� � .   

Step 2.4′.  Continue as in Step 2.3′ until the relative error criterion , 1jk l jkl+ −G G  ≤ jklrerr G  is satisfied for 
Gjkr = ( ) ( ) ( )11 1 1 21 2 1 ,1 , 1 2, , , , , , , , ,jkr j k jkr j k jkr nS nS jG x x G x x G x xλ λ λ λ λ λ⎡ ⎤

⎢ ⎥⎣ ⎦
� � �� � �… , r = l, l + 1, and rerr = 10−7.  

At this point, the construction process stops; f2jk is defined by ( )2 1 1, ,jk j kf x x λ λ =�� ( ), 1 1 1, ,jk l j kG x x λ λ+ =��  

( ),2 1 1, ,jk l j kF x x λ λ +�� ( ),2 1 1 1, ,jk l j kF x x λ λ+
�� , where ( ),2 1 1, ,jk l j kF x x λ λ��  is a smoothed estimate of y as a func-

tion of 1x�  and ( ),2 1 1 1, ,jk l j kF x x λ λ+
��  is a smoothed estimate of y as a function of xj; and the adjusted PRESS statis-

tic PRSAjk is determined for the approximation to y defined by f2jk. 

Step 3.  Similar to Step 2 with ( )3 1 2 1 2, , , ,jk j ky f x x x λ λ λ≅ � �� �  being estimated through a sequence of smoothing 
operations for j = 1, 2, …, nX, 1 2,j jx x x x≠ ≠� � , and k = 1, 2, …, 6; details of the estimation of 

( )3 1 2 1 2, , , ,jk j kf x x x λ λ λ� �� �  are described in Step 3′ and are similar to those described in Step 2′ for the estimation 
of ( )2 1 1, ,jk j kf x x λ λ��  with the addition that the intermediate smoothings indicated in Steps 2.2′ and 2.3′ now in-
volve 1x� , 2x�  and xj rather than 1x�  and xj.  Remainder of Step 3 is the same as in Step 2 and results in the selection 
of 3x�  as the most important variable at Step 3. 

Step 3′.  Procedure for obtaining smoothed model ( )3 1 2 1 2, , , ,jk j kf x x x λ λ λ� �� �  on the basis of a relative error crite-
rion for variable xj, xj ≠ 1x� , xj ≠ 2x� , and smoothing parameter λk in Step 3. 

Step 3.1′.  Estimate ( ) ( )1 2 1 2 1 1 1, ,jklF x x y f xλ λ λ≅ −� � �� � �  by smoothing on ( )( )2 1 1 1,i i ix y f x λ− �� � , i = 1, 2, …, nS, 
with a smoothing spline and smoothing parameter 2λ�  (Note:  ( )1 1 2 1 2, ,jkF x x λ λ� �� �  was previously determined in 
Step 2.1′ for 2 jx x=�  and 2 kλ λ=� ).  Estimate ( )2 1 2 1 2, , , ,jk j kf x x x λ λ λ� �� � ( )1 1 1y f x λ≅ − �� ( )1 2 1 2, ,jklF x x λ λ− � �� �  by 
smoothing on ( ) ( )( )1 1 1 1 1 2 1 2, , ,ij i i jk i ix y f x F x xλ λ λ− −� � �� � � , i = 1, 2, …, nS, with a smoothing spline and smoothing 
parameter λk.  Result is estimate ( )1 1 2 1 2, , , ,i jk i i ij ky G x x x λ λ λ≅ � �� � ( ) ( )1 1 1 1 2 1 2, ,jkl i if x F x xλ λ λ= + +� � �� � �  

( )2 1 2 1 2, , , ,jk i i ij kF x x x λ λ λ� �� � . 
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Table 3.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with GAMs (Continued) 

Step 3.2′.  Estimate ( ) ( ) ( )3 1 2 1 2 1 1 2 1 2 2 1 2 1 2, , , , , , , , , ,jk j k jk jk j kF x x x y F x x F x x xλ λ λ λ λ λ λ λ≅ − −� � � � � �� � � � � �  with a 
smoothing spline on 1x�  and smoothing parameter 1λ� .  Then, estimate ( )4 1 2 1 2, , , ,jk j kF x x x λ λ λ� �� �  ≅ 

( )2 1 2 1 2, , , ,jk j ky F x x x λ λ λ− � �� � ( )3 1 2 1 2, , , ,jk j kF x x x λ λ λ− � �� �  with a smoothing spline on 2x�  and smoothing parame-
ter 2λ� , and estimate ( )5 1 2 1 2, , , ,jk j jF x x x λ λ λ� �� � ( )3 1 2 1 2, , , ,jk j ky F x x x λ λ λ≅ − −� �� �  ( )4 1 2 1 2, , , ,jk j kF x x x λ λ λ� �� �  
with a smoothing spline on xj and smoothing parameter λk.  Result is estimate 

( )2 1 2 1 2, , , ,i jk i i ij ky G x x x λ λ λ≅ � �� � ( )5
1 2 1 23 , , , ,jkr i i ij kr F x x x λ λ λ== ∑ � �� � . 

Step 3.3′.  Similar to Step 3.2′ with ( ) ( )1 2 1 2 , 2 1 2 1 2, , , , , , , ,jkr j k jk r j kF x x x y F x x xλ λ λ λ λ λ−≅ − −� � � �� � � �  

( ), 1 1 2 1 2, , , ,jk r j kF x x x λ λ λ−
� �� �  being estimated for r = 6, 7 and 8 by smoothing on 1x� , 2x�  and xj, respectively, with 

corresponding smoothing parameters 1λ� , 2λ�  and λk.  Result is estimate ( )3 1 2 1 2, , , ,i jk i i ij ky G x x x λ λ λ≅ � �� �  

( )8
1 2 1 26 , , , ,jkr i i ij kr F x x x λ λ λ== ∑ � �� � . 

Step 3.4′.  Continue as in Step 3.4′ until the relative error criterion , 1jk l jkl jklrerr G+ − ≤G G  is satisfied for Gjkr 
= ( ) ( ) ( )1 2 1 2 21 22 2 1 2 ,1 ,2 , 1 2, , , , , , , , , , , , , , ,jkr i i ij k jkr j k jkr nS nS nS j kG x x x G x x x G x x xλ λ λ λ λ λ λ λ λ⎡ ⎤
⎢ ⎥⎣ ⎦

� � � � � �� � � � � � � �… , r = l, l + 
1,and rerr = 10−7.  At this point, the construction process stops; f3jk is defined by ( )3 1 2 1 2, , , ,jk j kf x x x λ λ λ =� �� �  

( ), 1 1 2 1 2, , , ,jk l j kG x x x λ λ λ+ =� �� � ( )3 2
1 2 1 23 , , , ,l

jkr j kr l F x x x λ λ λ+
=∑ � �� � , where ( )1 2 1 2, , , ,jkr j kF x x x λ λ λ� �� �  is a 

smoothed estimate of y as function of 1x� , 2x�  and xj for 1λ� , 2λ�  and λk, respectively; and the adjusted PRESS statis-
tic PRSAjk is determined for the approximation to y defined by f3jk. 

… 

Step N.  Terminate process when no variable satisfies specified cutoff. 
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Table 4.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with PP_REG 

Notation.  Variables λk, k = 1, 2, …, 6, represent candidate smoothing parameters used in smoothing splines (see Eq. 
(3.13)) in the sequential construction of PP_REG models, with λk resulting in a smoothing process with approxi-
mately δk degrees of freedom.  Specifically, λ1 ~ δ1 = 1, λ2 ~ δ2 = 2, λ3 ~ δ3 = 4, λ4 ~ δ4 = 7, λ5 ~ δ5 = 10, and λ6 ~ 
δ6 = 15.  However, unlike the stepwise construction procedure for GAMs described in Table 3, the degrees of free-
dom associated with smoothing splines in the stepwise construction of PP_REG models is obtained directly from the 
ppr subroutine in R rather than approximated from the δk’s. 

Step 1.  Estimate ( )1 jk j ky f x λ≅  with a smoothing spline on (xij, yi), i = 1, 2, …, nS, for j = 1, 2, …, nX and k = 1, 
2, …, 6.  For each xj, select model ( )1 j j jf x λ�  with smoothing parameter jλ�  from the models ( )1 jk j ky f x λ≅ , k 
= 1, 2, …, 6, that results in the smallest value for the adjusted PRESS statistic PRSA (see Eqs. (3.22) and (3.25) and 
discussion in Sect. 4.4).  For each of the models ( )1 j j jy f x λ≅ � , determine (i) degrees of freedom, (ii) F-statistic Fj 
for comparison against mean only model, and (iii) resultant p-value pj (see Eq. (3.54)).  Variable 1x�  with smallest p-
value is selected as the most important variable at Step 1; corresponding model, smoothing parameter, and degrees 
of freedom are represented by ( )1 1 1y f x λ≅ �� , 1λ�  and j1df , respectively.  The process terminates with no variable 
selected if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 2.  Estimate ( )2 1 1 2, ,j j j jy f x x λ λ≅ �  = ( ) ( )1 1 1 2 1 2, ,j j j j j jF x x F x xλ λ+� �  for j = 1, 2, …, nX and xj ≠ 1x�  

through a sequential application of PP_REG described in Steps 2.1′ – 2.3′.  For each of the models 

( )2 1 1 2, ,j j j jy f x x λ λ≅ � , determine (i) degrees of freedom, (ii) F statistic for comparison against model 

( )1 1 11y f x λ≅ ��  constructed in Step 1, and (iii) resultant p-value pj (see Eq. (3.54)).  Variable 2x�  with smallest p-

value is selected as most important variable at Step 2; corresponding model, smoothing parameters, and degrees of 

freedom are represented by ( )2 1 2 21 22, ,y f x x λ λ≅ � �� � , 21λ� , 22λ� , and j2df , respectively.  The process terminates with 

no variable selected at Step 2 if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 2′.   Procedure for obtaining model ( )2 1 1 2, ,j j j jf x x λ λ�  and smoothing parameters λj1 and λj2 for variable xj, 

xj ≠ 1x� , in Step 2 through a sequential application of PP_REG. 

Step 2.1′.  Estimate ( )1 1,jk j ky F x x λ≅ �  for k = 1, 2, …, 6 from the observations ( )1, , ,i ij ix x y⎡ ⎤⎣ ⎦�  i = 1, 2, …, nS, 

with PP_REG as indicated in conjunction with Eq. (3.39).  Determine adjusted PRESS value PRSA (see Eqs. (3.22) 

and (3.25)) for each of the six models and select model ( )1 1 1,j j jy F x x λ≅ �  and associated smoothing parameter λ1j 

with smallest value for PRSA. 

Step 2.2′.  Estimate ( )2 1,jk j kF x x λ�  for k = 1, 2, …, 6 from the observations ( )( )1 1 1 1, , ,i ij i j i ij jx x y F x x λ⎡ ⎤ −⎣ ⎦� � , i = 

1, 2, …, nS, with PP_REG as indicated in conjunction with Eq. (3.39); this corresponds to the second step in a 

PP_REG as indicated in Eq. (3.40). 
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Table 4.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with PP_REG (Continued)

Step 2.3′.  Approximations to y are given by ( ) ( )1 1 1 2 1, ,j j j jk j kF x x F x xλ λ+� �  for k = 1, 2, …, 6.  For each of these 

six models, determine the adjusted PRESS value PRSA (see Eqs. (3.22) and (3.25) and select the model with the 

smallest value for PRSA.  Specifically, with ( )2 1 2,j j jF x x λ�  and λj2 representing the selected model and smoothing 

parameter, the desired approximation to y for xj is given by ( )2 1 1 2, ,j j j jy f x x λ λ≅ �  = ( )1 1 1,j j jF x x λ�  + 

( )2 1 2,j j jF x x λ�  as indicated at the beginning of Step 2. 

Step 3.  Same as Step 2 but starting with estimate ( )3 1 2 1 2 3, , , ,j j j j jy f x x x λ λ λ≅ � �  = ( )3
3 1 21

, ,j j jss
F x x x λ

=∑ � �  for j 

= 1, 2, …, nX, xj ≠ 1x�  and xj ≠ 2x�  developed through a sequential application of PP_REG analogous to that de-

scribed in Steps 2.1′ – 2.3′. 

… 

Step N.  Terminate process when no variable satisfies specified cutoff. 
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Table 5.  Forward Stepwise Variable Selection Algorithm for Sensitivity Analysis with RP_REG 

Step 1.  Estimate ( )1 j jy f x≅  by performing RP_REG on ( ),ij ix y , i = 1, 2, …, nS, for j = 1, 2, …, nX as described 

in Sect. 3.3.4.  This results in partition sets Ajk, k = 1, 2, …, nPj, of the values xij, i = 1, 2, …, nS, and associated 

regressions 0 1
ˆ ˆˆ jk jk jk jy xβ β= + , k = 1, 2, …, nPj, for each xj.  At each step in the partitioning process for xj (i.e., 

for nPj = 2, then nPj = 3, and so on), the partition that results in the highest R2 value is retained (see Eqs. (3.47) – 

(3.48) and associated discussion); the partitioning process for xj is stopped when the partitioning of Ajk, k = 1, 2, …, 

nPj, into jk�A , k = 1, 2, …, nPj + 1, results in the model associated with the partitions jk�A  that having a higher ad-

justed PRESS value PRSA (see Eqs. (3.22) and (3.25)) than the model associated with the partitions Ajk (Note:  Be-

cause of the sequential partitioning process, only two of the partitions in the sequence jk�A , k = 1, 2, …, nPj + 1, 

differ from partitions in the sequence Ajk, k = 1, 2, …, nPj).  For the model constructed with xj, determine (i) degrees 

of freedom dfj = 3nPj – 1, (ii) F-statistic Fj for comparison against mean only model, and (iii) resultant p-value pj 

(see Eq. (3.54)).  Variable 1x�  with smallest p-value is selected as most important variable at Step 1; the correspond-

ing model and degrees of freedom are represented by ( )1 1y f x≅ �  and j1df , respectively.  The process terminates 

with no variable selected if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 2.  Estimate ( )2 1,j jy f x x≅ �  by performing RP_REG on ( )1, ,i ij ix x y⎡ ⎤⎣ ⎦� , i = 1, 2, …, nS, for j = 1, 2, …, nX 

and 1jx x≠ �  as described in Sect. 3.3.4.  This results in partition sets Ajk, k = 1, 2, …, nPj, for the vectors 1,i ijx x⎡ ⎤⎣ ⎦� , 

i = 1, 2, …, nS, and associated regressions 0 1 1 2
ˆ ˆ ˆˆ jk jk jk jk jy x xβ β β= + +� , k = 1, 2, …, nPj, for each xj (Note:  Con-

struction of the partition sets for 1,i ijx x⎡ ⎤⎣ ⎦� , i = 1, 2, …, nS, starts ab initio and does not involve the partition sets 

constructed for 1x�  in Step 1).  At each step in the partitioning process for xj (i.e., for nPj = 2, then nPj = 3, and so 

on), the partition that results in the highest R2 value is retained (see Eqs. (3.47) – (3.48) and associated discussion); 

the partitioning process associated with xj is stopped when the partitioning of Ajk, k = 1, 2, …, nPj, into jk�A , k = 1, 

2, …, nPj + 1, results in the model associated with the partitions jk�A  having a higher adjusted PRESS value PRSA 

(see Eqs. (3.22) and (3.25)) than the model associated with the partitions Ajk (Note:  Because of the sequential parti-

tioning process, only two of the partitions in the sequence jk�A , k = 1, 2, …, nPj + 1, differ from partitions in the 

sequence Ajk, k = 1, 2, …, nPj).  For the model constructed with xj, determine (i) degrees of freedom dfj = 5nPj – 2, 

(ii) F-statistic Fj for comparison against model ( )1 1y f x≅ �  selected in Step 1, and (iii) resultant p-value pj (see Eq. 

(3.54)).  Variable 2x�  with smallest p-value is selected as most important variable at Step 2; the corresponding model 

and degrees of freedom are represented by ( )2 1 2,y f x x≅ � �  and j2df , respectively.  The process terminates with no 

variable selected if all pj are greater than a specified cutoff (e.g., α = 0.02). 

Step 3.  Estimate ( )3 1 2, ,j jy f x x x≅ � �  by performing RP_REG on ( )1 2, , ,i i ij ix x x y⎡ ⎤⎣ ⎦� � , i = 1, 2, …, nS, for j = 1, 2, 

…, nX, 1jx x≠ �  and 2jx x≠ �  as described in Sect. 3.3.4.  Continue as in Step 2. 

… 

Step N.  Terminate process when no variable satisfies specified cutoff. 

 


