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With many predictors, choosing an appropriate subset of the covariates is a crucial—and difficult—step
in nonparametric regression. We propose a Bayesian nonparametric regression model for curve fitting and
variable selection. We use the smoothing splines ANOVA framework to decompose the regression func-
tion into interpretable main effect and interaction functions, and use stochastic search variable selection
through Markov chain Monte Carlo sampling to search for models that fit the data well. We also show
that variable selection is highly sensitive to hyperparameter choice, and develop a technique for selecting
hyperparameters that control the long-run false-positive rate. We use our method to build an emulator for
a complex computer model for two-phase fluid flow.

KEY WORDS: Bayesian hierarchical modeling; Markov chain Monte Carlo; Nonparametric regression;
Smoothing splines ANOVA; Variable selection.

1. INTRODUCTION

Nonparametric regression techniques have become a popular
tool for analyzing complex computer model output. Consider,
for example, a two-phase fluid flow simulation study (Vaughn
et al. 2000) carried out by Sandia National Laboratory as part of
the 1996 compliance certification application for a waste isola-
tion pilot plant (WIPP) in New Mexico. The computer model
simulates the waste panel’s condition 10,000 years after the
waste panel has been penetrated by a drilling intrusion. The
simulation model uses several input variables describing var-
ious environmental conditions. The objectives are to predict
waste pressure for new sets of environmental conditions and to
determine which environmental factors have the greatest effect
on the response. Because the simulation model is computation-
ally intensive, we would like to develop an emulator—a sta-
tistical model to replicate the output of the complex computer
model—to address these objectives.

The nonparametric regression model for response yi is yi =
μ + f (x1i, . . . , xpi) + εi, i = 1, . . . ,N, where μ is the inter-
cept, f is the unknown function of covariates x1i, . . . , xpi, and
εi is error. With many predictors, choosing an appropriate sub-
set of the covariates is a crucial—and difficult—step in fitting
a nonparametric regression model. Several methods are avail-
able for curve fitting and variable selection for multiple non-
parametric regression. Multivariate adaptive regression splines
(MARS; Friedman 1991) is a stepwise procedure that selects
variables and knots for a spline basis for each curve. But be-
cause stepwise selection is a discrete procedure, it can be unsta-
ble and highly sensitive to small changes in the data (Breiman

1995). Therefore, Lin and Zhang (2006) proposed the compo-
nent selection and smoothing operator (COSSO) for smoothing
spline analysis of variance models. The COSSO is a penaliza-
tion technique for performing variable selection through con-
tinuous shrinkage of the norm of each of the functional compo-
nents.

The Bayesian framework offers several potential advantages
for nonparametric regression; for example, missing data and
non-Gaussian likelihoods can be easily incorporated in the
Bayesian model. Moreover, prediction is improved through
Bayesian model averaging, and posterior model probabilities
are natural measures of model uncertainty.

A common approach is to model computer output as a
Gaussian process; for example, the “blind kriging” method of
Joseph, Hung, and Sudjianto (2008) assumes that the response
is the sum of a mean trend and a Gaussian process, and variable
selection is performed on the mean trend, which is taken to be
the sum of second-order polynomials and interactions. But all
potential predictors are included in the Gaussian process co-
variance, and thus blind kriging does not perform any variable
selection on the overall model.

In contrast, Linkletter et al. (2006) modeled the regression
function f as a p-dimensional Gaussian process with covari-
ance depending on the p covariates. They performed variable
selection on the overall model using stochastic search variable
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selection through Markov chain Monte Carlo (MCMC) sam-
pling (e.g., Mitchell and Beauchamp 1988; George and McCul-
loch 1993; Chipman 1996; George and McCulloch 1997) to
include/exclude variables from the covariance of the Gaussian
process. Although this method of variable selection improves
predictions for complex computer model output, interpreting
the relative contribution of each covariate or groups of covari-
ates to the p-dimensional fitted surface is difficult. In addition,
the covariance function used results in a model that includes all
higher-order functional interactions among the important pre-
dictors; that is, their model cannot reduce to an additive model
in which the response surface is the sum of univariate func-
tions. Therefore, the functional relationship between a predic-
tor and the outcome is always dependent on the value of all
of the other predictors included in the model. As a result, al-
though this model is well suited for a complicated response
surface, in many cases estimation and prediction can be im-
proved by assuming a simpler model. For instance, Shively,
Kohn, and Wood (1999) proposed a model for variable selec-
tion in additive nonparametric regression that takes an empirical
Bayesian approach and gives each main effect function an inte-
grated Brownian motion prior. Wood et al. (2002) extended the
work of Shively, Kohn, and Wood (1999) to nonadditive mod-
els, again assuming integrated Brownian motion priors for the
main effect functions and model interactions between predic-
tors as two-dimensional surfaces with thin-plate spline priors.
But interpreting the relative contributions of the main effect and
interaction terms is difficult, because the spans of these terms
overlap. To perform model selection, Wood et al. used data-
based priors for the parameters that control the prior variance
of the functional components. This allows for a Bayesian infor-
mation criterion (BIC) approximation of the posterior probabil-
ity of each model under consideration. This approach requires
computing posterior summaries of all models under consider-
ation, which is infeasible in situations with many predictors,
especially when high-order interaction terms are considered.
Gustafson (2000) also included a two-way interaction, but, to
ensure identifiability, did not allow main effects in the model si-
multaneously with interactions and allowed predictors to inter-
act with at most one other predictor. Because complex computer
models often have many interaction terms, this is a significant
limitation.

In this article we propose a Bayesian model for variable se-
lection and curve fitting for nonparametric multivariate regres-
sion. Our model uses the functional analysis of variance frame-
work (Wahba 1990; Wahba et al. 1995; Gu 2002) to decompose
the function f into main effects fj, two-way interactions fjk, and
so on, that is,

f (x1i, . . . , xpi) =
p∑

j=1

fj(xji) +
∑
j<k

fjk(xji, xki) + · · · . (1)

The functional ANOVA (BSS–ANOVA) is equipped with sto-
chastic constraints that ensure that each of the components are
identified so that their contribution to the overall fit can be stud-
ied independently. Rather than confining the regression func-
tions to the span of a finite set of basis functions as in Bayesian
splines, we use a more general Gaussian process prior for each
regression function.

We perform variable selection using stochastic search vari-
able selection through MCMC sampling to search for mod-
els that fit the data well. The orthogonality of the functional
ANOVA framework is particularly important when the objec-
tive is variable selection. Assume, for example, that two vari-
ables have important main effects but their interaction is not
needed. If the interaction is modeled haphazardly so that the
span of the interaction includes the main effect spaces, then the
inclusion probability possibly could be split between the model
with main effects and no interaction and the model with the
interaction alone, because both models can give the same fit.
In this case, inclusion probabilities for the main effects and in-
teraction could be less than 1/2, and we would fail to identify
the important terms. Because of the orthogonality, our model
includes only interactions that explain features of the data that
cannot be explained by the main effects alone. Moreover, due to
the additive structure of our regression function, we are able to
easily include categorical predictors, which is problematic for
Gaussian process models (although Qian, Wu, and Wu 2008
suggested a way to incorporate categorical predictors into a
Gaussian process model). Our model also is computationally
efficient, because as we avoid enumerating all possible models
and avoid inverting large matrixes at each MCMC iteration. We
show that stochastic search variable selection can be sensitive to
hyperparameter selection, and overcome this problem by spec-
ifying hyperparameters that control the long-run false-positive
rate. We use Bayesian model averaging for prediction, which
improves predictive accuracy.

The article is organized as follows. Sections 2 and 3 intro-
duce the model. Section 4 describes the MCMC algorithm for
stochastic search variable selection. Section 5 presents a brief
simulation study comparing our model with other nonparamet-
ric regression procedures. Our Bayesian model compares favor-
ably to MARS, COSSO, and the method of Linkletter et al. in
terms of predictive performance and selecting important vari-
ables in the model. Section 6 analyzes the WIPP data, illus-
trating the advantages of the Bayesian approach in quantifying
variable uncertainty. Section 7 concludes.

2. A BAYESIAN SMOOTHING SPLINE
ANOVA MODEL

2.1 Simple Nonparametric Regression

For ease of presentation, we introduce the nonparametric
model in the single-predictor case here and then extend it to
the multiple-predictor case in Section 2.2. The simple nonpara-
metric regression model is

yi = μ + f (xi) + εi, (2)

where f is an unknown function of a single covariate xi ∈ [0,1]
and εi

iid∼ N(0, σ 2). The regression function f is typically re-
stricted to a particular class of functions. We consider the sub-
set of Mth-order Sobolev space that includes only functions that
integrate to zero and have M proper derivatives, that is, f ∈ FM ,
where

FM =
{

g
∣∣∣g, . . . ,g(M−1) are absolutely continuous,

∫ 1

0
g(s)ds = 0,g(M) ∈ L2[0,1]

}
. (3)
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To ensure that each draw from f ’s prior is a member of this
space, we select a Gaussian process prior with cov(f (s), f (t)) =
σ 2τ 2K1(s, t), with the kernel defined as

K1(s, t) =
M+1∑
m=1

cmBm(s)Bm(t) + (−1)M

(2(M + 1))!B2(M+1)(|s − t|),

cm > 0 are known constants, and Bm is the mth Bernoulli
polynomial. Wahba (1990) showed that each draw from this
Gaussian process resides in FM and that the posterior mode as-
suming cm = ∞ for m ≤ M and cM+1 = 1 is the (M + 1)st-order
smoothing spline. Steinberg and Bursztyn (2004) discussed an
additional interpretation of this kernel, demonstrating that for
the same choices of cm, this Gaussian process model is equiva-
lent to a Bayesian trigonometric regression model with diffuse
priors for the low-order polynomial trends, a proper Gaussian
prior for the (M + 1)st-degree polynomial, and independent
Gaussian priors for the trigonometric basis function’s coef-
ficients with variances depending on the frequencies of the
trigonometric functions.

Throughout, we select M = 1 and set c ≡ c1 = · · · = cM+1.
Therefore, draws from the prior are continuously differentiable
with path properties of integrated Brownian motion. As dis-
cussed in Section 3, performing variable selection requires that
c < ∞. In this kernel, the term KP(s, t) = ∑M+1

m=1 Bm(s)Bm(t)
controls the variability of the (M + 1)st-degree polynomial

trend, and KN(s, t) = (−1)M

(2(M+1))!B2(M+1)(|s − t|) is the station-
ary covariance of the deviation from the polynomial trend. In
our analyses in Sections 5 and 6, the constant c is set to 100 to
give vague, yet proper priors for the linear and quadratic trends.
Thus, our model essentially fits a quadratic response surface
regression plus a remainder term that is a mean-0 stationary
Gaussian process constrained to be orthogonal to the quadratic
trend. We have intentionally overparameterized with τ 2 and σ 2

for reasons that we make clear in Section 3.

2.2 Multiple Regression

The nonparametric multiple regression model for response yi
is yi = μ+ f (x1i, . . . , xpi)+εi, where x1i, . . . , xpi ∈ [0,1] are co-

variates, f ∈ F is the unknown function, and εi
iid∼ N(0, σ 2). To

perform variable selection, we use the ANOVA decomposition
of the space F into orthogonal subspaces, that is,

F =
{ p⊕

j=1

Fj

}
⊕

{ p⊕
k<l

(Fk ⊗ Fl)

}
⊕ · · · , (4)

where ⊕ the direct sum, ⊗ is the direct product, and each Fj
is given by (3) (see Wahba 1990 or Gu 2002 for more de-
tail). Assume that each fj is a Gaussian process with covariance
σ 2τ 2

j K1(xji, xji′), and that each fkl is a Gaussian process with

covariance σ 2τ 2
klK2(xki, xki′ , xli, xli′), where

K2(xki, xki′ , xli, xli′) = (KP(xki, xki′) + KN(xki, xki′))

× (KP(xli, xli′) + KN(xli, xli′))

+ (c − 1)KP(xki, xki′)KP(xli, xli′). (5)

For large c, the final term (c − 1)KP(xki, xki′)KP(xli, xli′) gives
a vague prior to the low-order bivariate polynomial trend. Us-
ing this kernel, fj ∈ Fj and fkl ∈ Fk ⊗ Fl. This ensures that

each draw from this space will satisfy
∫ 1

0 fj(s)ds = 0, j =
1, . . . ,p, to identify the intercept. This also identifies the main
effects by forcing the interactions to satisfy

∫ 1
0 fkl(s, t)ds =∫ 1

0 fkl(s, t)dt = 0, k < l = 2, . . . ,p. These constraints allow for
a straightforward interpretation of each term’s effect.

Higher-order interactions also can be included; however,
these terms are difficult to interpret. Thus we combine all
higher-order interactions into a single process. Let the higher-
order interaction space be

Fo = F ∩
{ p⊕

j=1

Fj ⊕
p⊕

k<l

(Fk ⊗ Fl)

}C
, (6)

where AC is the compliment of A. The covariance of the
Gaussian process fo ∈ Fo is

cov(f0(xi), f0(xi′))

= σ 2τ 2
0

[ p∏
j=1

(1 + K1(xji, xji′))

− 1 −
p∑

j=1

K1(xji, xji′) −
p∑

j<k

K2(xji, xji′ , xki, xki′)

]
. (7)

Defining the covariance in this manner ensures that f0 will be
orthogonal to each main effect and interaction term.

The finite-dimensional model for the vector of observations
y = (y1, . . . , yn)

′ is

y = μ+
p∑

j=1

fj(xj)+
∑
k<l

fkl(xk,xl)+ f0(x1, . . . ,xp)+ε, (8)

where μ = (μ, . . . ,μ)′ is the intercept, xj = (xj1, . . . , xjn)
′ is a

vector of observations for the jth covariate, fj(xj) is the jth main
effect function evaluated at the n observations, fkl(xk,xl) is the
vectorized interaction, f0(x1, . . . ,xp) captures higher-order in-
teractions, and ε ∼ N(0, σ 2In). We assume that the intercept μ

has a flat prior and that σ 2 ∼ InvGamma(a/2,b/2). The priors
for the main effect and interaction functions are defined through
the kernels in (4) as

fj(xj) ∼ N(0, σ 2τ 2
j �j), (9)

fkl(xk,xl) ∼ N(0, σ 2τ 2
kl�kl), (10)

f0(x1, . . . ,xp) ∼ N(0, σ 2τ 2
0 �0), (11)

where the (i, i′) component of the covariance matrix �j is
K1(xji, xji′), the (i, i′) component of the covariance matrix �kl is
K2(xki, xki′ , xli, xli′), �0 is defined similarly following (7), and
τj, τkl, and τ0 are unknown with priors given in Section 3. To
help specify priors for τj, τkl, and τ0, we rescale �j, �kl, and
�0 to have trace n. After this standardization, στj (στkl) can
be viewed as the typical prior standard deviation of an element
of fj (fkl).
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2.3 Categorical Predictors

Complex models often have categorical variables that repre-
sent different states or point to different submodels to be used
in the analysis. The BSS–ANOVA framework also is amend-
able to these unordered categorical predictors. Assume that

xi ∈ {1,2, . . . ,G} is categorical and that f (xi) = θxi , where θg
iid∼

N(0, σ 2τ 2), g = 1, . . . ,G. To identify the intercept, we enforce
the sum-to-zero constraint

∑G
g=1 θg = 0. This model also can

be written in the kernel framework by taking f to be a mean-0
Gaussian process with singular covariance cov(f (s), f (t)) =
σ 2τ 2K1(s, t), where the kernel is defined as K1(s, t) = KN(s, t),

KN(s, t) = G − 1

G
I(s = t) − 1

G
I(s �= t), (12)

and I(·) is the indicator function. Note that with unordered cat-
egorical predictors, we exclude the low-order polynomial trend,
that is, KP(s, t) = 0 for all s and t.

Interactions including categorical predictors with the ker-
nel given in (12) are handled no differently than interac-
tions between continuous predictors. Assume, for example,
that x1 ∈ {1, . . . ,G} is categorical and x2 ∈ [0,1] is continu-
ous. The kernel-based interaction is equivalent to the model
f1,2(x1, x2) = hx1(x2) for some hx1 ∈ FM ; that is, the effect of
x2 is different within each level of x1. An attractive feature of
this kernel is that it enforces the restrictions

∫
hx1(x2)dx2 = 0

for all x1 ∈ {1, . . . ,G} and
∑

g hg(x2) = 0 for all x2 ∈ [0,1] to
separate the interaction from the main effects.

3. VARIABLE SELECTION

In variable selection, it is common to represent the subset
of covariates included in the model with indicator variables γj

and γjk, where γj is 1 if the main effect for xj is in the model
and 0 otherwise and γjk is 1 if the interaction for xj and xk is
in the model and 0 otherwise. To avoid enumerating all possi-
ble models, stochastic search variable selection (e.g., Mitchell
and Beauchamp 1988; George and McCulloch 1993; Chipman
1996; George and McCulloch 1997) assigns priors to the bi-
nary indicators and computes model probabilities using MCMC
sampling. To perform variable selection in the nonparametric
setting, we specify priors for the standard deviations τj and τkl

in terms of indicators γj and γkl, to give priors with positive
mass at 0. Given that τj (τkl) is 0 and c is finite, the curve fj
(fkl) is equal to 0, and the term is removed from the model. This
approach is slightly different than the original formulation of
George and McCulloch (1993), who gave small (but nonzero)
variance to negligible variables; in contrast to their approach,
setting the variance precisely to 0 completely removes variables
from the model.

Parameterization, identification, and prior selection for the
hypervariances in Bayesian hierarchical models are notoriously
problematic and are topics of active research. In a comparative
study of several commonly used priors, Gelman (2006) rec-
ommended either a uniform or half-Cauchy prior on the stan-
dard deviation. Following this recommendation, we assume that

τj = γjηj, where γj
iid∼ Bern(0.5) and ηj

iid∼ HC(ρ), where ρ is the
median of the half-Cauchy prior. The interaction standard devi-
ations τkl are modeled similarly.

Variable selection can be sensitive to the prior standard
deviation. To illustrate the effect of the prior standard de-
viation on model selection, first consider the simpler case
of multiple linear regression with orthogonal covariates, that

is, yi = ∑p
j=1 γjXijβj + εi, where X′X = In, γj

iid∼ Bern(0.5),

β ∼ N(0, σ 2τ 2In), and ε ∼ N(0, σ 2In). Assuming that σ 2 ∼
InvGamma(a/2,b/2), the marginal posterior log odds of γj = 1
are approximately

log
p(γj = 1|y, τ )

p(γj = 0|y, τ )
≈ −1

2
log(1 + τ 2) + t2j τ

2

2(1 + τ 2)
, (13)

where t2j = β̂2
j /σ̂ 2, β̂ = X′y is the least squares estimate of β ,

and σ̂ 2 = (y′y + b)/(n + a) is σ 2’s posterior mode. If τ = 0,
then the log odds are 0 for any value of t2j ; as τ goes to infinity,

the log odds decline to negative infinity for any value of t2j .
Therefore, choosing the prior of τ haphazardly can result in
the influence of the data being completely overwhelmed by the
prior standard deviation.

The subtle relationship between τ and the posterior of γj
complicates the choice of a prior for τ that accurately depicts
our prior model uncertainty. To alleviate this difficulty, we se-
lect priors for the standard deviations to give desirable long-run
false-positive rates. The marginal log odds for the univariate
nonparametric model given in Section 2.1 [analogous to (13)
for linear regression] are approximately

log
p(γ = 1|y, τ )

p(γ = 0|y, τ )

≈ −1

2
log |τ 2� + I| + 1

2
y′(�−1/τ 2 + I)−1y. (14)

In Appendix A.1 we show that under the null distribution y ∼
N(0, σ I),

E

[
log

(
p(γ = 1|y, τ )

p(γ = 0|y, τ )

)]
≈ −nτ 2, (15)

where the expected value is taken with respect to y. This sug-
gests that the prior of τ should be scaled by

√
n; for example,

we take τ ∼ HC(λ/
√

n). This is similar to the unit-information
prior of Kass and Wasserman (1995), which uses

√
n-scaling,

and also to the approach of Ishwaran and Rao (2005), which
uses

√
n-scaling for the Bayesian linear regression model to

give desirable frequentist properties. It is important to note that
because our prior depends on the sample size n, the procedure
is not technically fully Bayesian; however, it could be easily
modified to be fully Bayesian by incorporating reliable prior
information for τ .

To select λ, we randomly generate 10,000 y for various n
assuming that y ∼ N(0, In). For each simulated data set, we
compute E(π |y). Because it is common to select a variable if
E(π |y) > 0.5 (e.g., Barbieri and Berger 2004), Figure 1 shows
the proportion of the 10,000 data sets that give E(π |y) > 0.5
for each n and λ. After the prior of τ is tuned to depend on n,
the false-positive rate remains stable for n ≥ 50 and is around
0.05 for λ = 2. Although this result applies to the univariate
model, we also use half-Cauchy priors with λ = 2 for each stan-
dard deviation in the multivariate model. The simulation study
reported in Section 5 verifies that this prior controls the false-
positive rate in the multiple-predictor setting as well, even in
the presence of correlated predictors.
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Figure 1. Plot of the probability (with respect to the null distribu-
tion of y) that E(π |y, λ) > 0.5 by λ.

4. MCMC ALGORITHM

Here we present the algorithm used to draw MCMC samples
from the posterior of the models defined in Sections 2 and 3.
Gibbs sampling is used for μ and σ 2. The full conditionals for
these parameters are

μ|rest ∼ N
(
1′[y − f(x1, . . . ,xp)]/n, σ 2/n

)
, (16)

σ 2|rest ∼ InvGamma
([

n(p + p(p − 1)/2 + 1) + a
]
/2,

[SSE + SSM + b]/2
)
, (17)

where

SSE = (y − f(x1, . . . ,xp))
′(y − f(x1, . . . ,xp)), (18)

SSM =
p∑

j=0

fj(xj)
′�−1

j fj(xj)/τ
2
j

+
∑
k<l

fkl(xk,xl)
′�−1

kl fkl(xk,xl)/τ
2
kl. (19)

In cases with categorical predictors, the covariance matrixes are
singular, and we use the generalized inverses.

Define all of the parameters in the model other than the
jth main effect parameters fj(xj) and τj as j. Draws from
p(fj(xj), τj|j) are made by first integrating over fj(xj) and
making a draw from p(τj|j), and then sampling fj(xj) given
τj and j. Integrating over fj(xj) gives

p(τj|j) ∝

⎧⎪⎪⎨
⎪⎪⎩

exp

(
− z′

jzj

2σ 2

)
if τj = 0

|�j|1/2 exp

(
−z′

j�jzj

2σ 2

)
g(τj|λ) if τj > 0,

(20)

where �j = In − (In + �−1
j /τ 2

j )−1, zj = y − f(x1, . . . ,xp) +
fj(xj), and g(τj|λ) is the half-Cauchy density function. Sam-
ples are drawn from p(τj|j) using adaptive-rejective sampling,
with candidates taken from the prior of τj. Note that we do not
directly sample γj or ηj, but instead directly sample the stan-
dard deviation τj = γjηj, assuming its zero-inflated half-Cauchy
prior. Given τj, the main effect curve has full conditional,

fj(xj)|τj,j ∼ N(�jzj, σ
2�j), (21)

and is updated using Gibbs sampling. We also use this approach
to update the interaction curves.

Inverting the n × n matrix In + �−1
j /τ 2

j at each MCMC it-
eration can be cumbersome for large data sets. Matrix inver-
sion can be avoided by computing the spectral decomposition
�j outside of the MCMC algorithm. Let �j = �jDj�

′
j , where

�j is the n × n orthonormal eigenvector matrix and Dj is the
diagonal matrix of eigenvalues dj1 ≥ · · · ≥ djn. Then fj(xj) can
be updated by drawing rj ∼ N(0, σ 2[In + τ 2

j Dj]−1) and setting

fj = �[(In + τ 2
j Dj)

−1�′zj + rj]. (22)

This sampling procedure requires inversion of only the diagonal
matrix, In + τ 2

j Dj.
In practice, retaining all n eigenvector/eigenvalue pairs in the

spectral decomposition of �j may be unnecessary. A reduced
model replaces �j = �jDj�

′
j with �∗

j = �∗
j D∗

j �
∗′
j , where �∗

j is
the first K rows of �j and D∗

j is the diagonal matrix with diag-
onal elements dj1, . . . ,djK . Analogous simplifications may be
used for the interaction curves.

MCMC sampling is carried out in the freely available soft-
ware package R (R Development Core Team 2006). We gener-
ate 20,000 samples from the posterior and discard the first 5,000
of these. Convergence is monitored by inspecting trace plots of
the deviance and several of the variance parameters. For each
MCMC iteration, our model is on the order of (number of terms
in the model) ∗ K2; therefore, computation becomes increas-
ingly time-consuming as the number of interactions grows. For
the WIPP data reported in Section 6, running the two-way in-
teraction model takes a few hours on an ordinary PC.

We compare models using the deviance information criterion
(DIC) of Speigelhalter et al. (2002), defined as DIC = D̄ + pD,
where D̄ is the posterior mean of the deviance, pD = D̄ − D̂ is
the effective number of parameters, and D̂ is the deviance eval-
uated at the the posterior mean of the parameters in the like-
lihood. This model’s fit is measured by D̄, and its complexity
is captured by pD. Models with smaller values of DIC are pre-
ferred.

5. SIMULATION STUDY

In this section we report a simulation study conducted to
compare the BSS–ANOVA model described in Section 2 with
MARS, COSSO, and the Gaussian process model of Linklet-
ter et al. (2006). MARS analyses are done in R using the
“polymars” function in the “polspline” package. The Gaussian
process model of Linkletter et al. assumes that f(x1, . . . ,xp) is
multivariate normal with mean μ and covariance

cov(f (x1i, . . . , xpi), f (x1i′ , . . . , xpi′)) = τ 2
p∏

j=1

ρ
4(xji−xji′ )2

j . (23)

The prior of the correlation parameter ρj is a mixture of a
Uniform(0,1) and a point mass at 1, with the point mass at 1
having prior probability 0.25. If ρk = 1, then xk does not appear
in the covariance and is essentially removed from the model.
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5.1 Setting

We generate data assuming the underlying models given in
Table 1. We use 50 simulated data sets for each simulation sce-
nario. Following Li and Zhang (2006), we specify models using
four building block functions (plotted in Figure 2):

• g1(t) = t
• g2(t) = (2t − 1)2

• g3(t) = sin(2π t)/(2 − sin(2π t))
• g4(t) = 0.1 sin(2π t) + 0.2 cos(2π t) + 0.3 sin2(2π t) +

0.4 cos3(2π t) + 0.5 sin3(2π t).

The covariates x1, . . . ,xp are generated on the interval [0,1] us-
ing three covariance structures: independence, compound sym-
metry (CS), and autoregressive (AR). For the independence
case, the covariates are generated as independent Uniform(0,1).
To draw covariates with a compound symmetric covariance, we
sample w0, . . . ,wp as independent Uniform(0,1) variables and
define xj = (wj + two)/(1 + t), to give cov(xj,x′

j) = t2/(1 + t2)
for any pair (j, j′). We generate the AR covariates by sampling
w1, . . . ,wp as independent Normal(0,1) variables and defining

x1 = w1 and xj = ρxj−1 + √
1 − ρ2wj for j > 1. The covariates

are trimmed on [−2.5,2.5] and scaled to [0,1].
We compare the methods in terms of prediction accuracy and

variable selection. For each data set and method, we compute

MSE = 1

1000

1000∑
j=1

(f (z1j, . . . , zpj) − f̂ (z1j, . . . , zpj))
2, (24)

where f is the true mean curve; f̂ is the estimated value (the
posterior mean, averaged over all models, for Bayesian meth-
ods); xi, i = 1, . . . ,n, are the observed design points; and zj,
j = 1, . . . ,1000, are unobserved locations drawn independently
from the covariate distribution.

We also record the true-positive and false-positive rates
for each model. The true- (false-) positive rate is computed
by recording the proportion of the important (unimportant)
variables included for each data set and averaging over all
simulated data sets. A variable is deemed to be included in
the BSS–ANOVA model if the posterior inclusion probabil-
ity exceeds 0.5. Linkletter et al. (2006) used an added-variable
method to select important variables at a given type I error level.
For computational convenience, we assume that a covariate is
in the model if the posterior median of ρk is <0.5. This gives
a type I error of approximately 0.05 for the simulation reported
later. We also tune the generalized cross-validation penalty of
MARS to give a type I error near 0.05 (gcv = 2.5 for design 1
and gcv = 2 for designs 2 and 3).

Main effects–only models are used for design 1 for the
MARS, COSSO, and BSS–ANOVA models; all possible two-
way interactions are included as candidates for the other de-
signs. The f0 component is included for all BSS–ANOVA fits.

Figure 2. Plots of the true functions used in the simulation study.

5.2 Results

For each simulation design, the Bayesian mean squared er-
ror (MSE) is significantly smaller than the MSE for MARS and
COSSO [Table 2(a)]. Although MARS is able is mimic many
of the important features of the true curves, its piecewise lin-
ear fit does not match the smooth true curves shown in Fig-
ure 2. As was also shown by Lin and Zhang (2006), the COSSO
improves on MARS. Although the fitted curves from COSSO
are often similar to those of the Bayesian model, the Bayesian
model achieves smaller MSE through model averaging. It also
may be possible to improve the performance of the frequentist
methods using non-Bayesian model averaging, such as bagging
(Brieman 1996).

For each simulation design, the BSS–ANOVA model also
maintains the nominal false-positive rate; for all simulations,
3%–10% of the truly uninformative variables are included in
the model [Table 2(b)], supporting the choice of hyperparame-
ters in Section 3. (Note that inclusion rates are not given for
design 2, because it is does not fall within our BSS–ANOVA
model, which does not include three-way interactions.) To fur-
ther support the hyperparameter selection, we also simulated 50
data sets from the null model with p = 10 unimportant predic-
tors and σ = 2.28 (not shown in Table 2). The false-selection
rate was no more than 7.5% for independent, CS, or AR(1) co-
variates. Moreover, despite the potential effects of concurvity
(Gu 1992, 2004), a nonparametric analog of multicollinearity,
the BSS–ANOVA is able to identify truly important predictors
at a high rate even with correlated predictors.

The BSS–ANOVA model also outperforms the method of
Linkletter et al. for designs 1 and 3. These designs exclude
some of the interactions involving the important main effects,
and therefore the Linkletter full-interaction model is not appro-
priate. The method of Linkletter et al. does perform well for

Table 1. Simulation study design

Design n p σ f(x1, . . . ,xp)

1 100 10 2.28 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4)

2 100 4 2.28 5g1(x1) + 3g2(x2) + 4g3(x1x2x3)

3 100 6 2.28 5g1(x1) + 3g2(x2) + 4g3(x3) + 6g4(x4) + 4g3(x1x2)
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Table 2. PMSE is reported as the mean (standard error) over the simulated data sets for each simulation setting. The true- (false-) positive rate
is computed by recording the proportion of the important (unimportant) variables included for each data set and then averaging over all

simulated data sets. A variable is deemed to be included in the Bayesian models if the posterior inclusion probability exceeds 0.5

Correlation of
Design the predictors MARS COSSO BSS–ANOVA Linkletter

(a) Prediction MSE
1 Ind 3.23 (0.28) 2.33 (0.13) 1.67 (0.08) 3.50 (0.12)
1 CS (t = 1) 7.60 (0.83) 6.08 (0.40) 4.11 (0.27) 7.39 (0.24)
1 AR (ρ = 0.5) 5.86 (0.44) 5.37 (0.33) 3.72 (0.18) 6.38 (0.22)
2 Ind 2.26 (0.08) 1.68 (0.04) 1.63 (0.04) 1.40 (0.05)
3 Ind 5.03 (0.38) 4.79 (0.23) 2.72 (0.09) 4.50 (0.08)

(b) Inclusion percentage for variables not in the true model
1 Ind 0.04 0.06 0.03 0.03
1 CS (t = 1) 0.04 0.13 0.03 0.08
1 AR (ρ = 0.5) 0.03 0.12 0.05 0.06
2 Ind – – – –
3 Ind 0.04 0.13 0.10 0.11

(c) Inclusion percentage for variables in the true model
1 Ind 0.78 0.91 0.91 0.81
1 CS (t = 1) 0.74 0.83 0.79 0.80
1 AR (ρ = 0.5) 0.75 0.82 0.78 0.80
2 Ind – – – –
3 Ind 0.67 0.77 0.82 0.89

NOTE: Results of the simulation study.

design 2, which includes a three-way interaction and no vari-
ables not included in the three-way interaction. This indicates
that the method of Linkletter et al. is preferred if the response
surface is a complicated function of high-order interactions be-
tween all of the significant predictors, whereas the proposed
method is likely to perform well if the response surface is the
sum of simple univariate and bivariate functions.

6. ANALYSIS OF THE WASTE ISOLATION PILOT
PLANT DATA

In this section we analyze the WIPP data set mentioned in
Section 1. The outcome variable of interest here is cumulative
brine flow (m3) into a waste repository at 10,000 years for a
drilling intrusion at 1000 years that penetrates the repository
and an underlying region of pressurized brine (an E1 intru-
sion in the terminology of Helton et al. 2000). The four main
pathways by which brine enters the repository are flow through
the anhydrite marker beds, drainage from the disturbed rock
zone, flow down the intruding borehole from overlying forma-
tions, and brine flow up the borehole from a pressurized brine
pocket. There is a total of n = 300 observations, and we include
p = 11 possible predictors. The predictors involved in the two-
phase fluid flow model relate to various environmental condi-
tions and are described briefly in Appendix A.2 and in detail
by Vaughn et al. (2000). All of the predictors are continuous
except the pointer variable for microbial degradation of cellu-
lose (WMICDFLG), which has three levels: (a) no microbial
degradation of cellulose, (b) microbial degradation only of cel-
lulose, and (c) microbial degradation of cellulose, plastic, and
rubber.

We compare the BSS–ANOVA model with two-way interac-
tions with the model of Linkletter et al. (2006). Although in-
corporating categorical predictors in Linkletter et al.’s Gaussian

process model is difficult, to facilitate the comparison, we or-
der the three categories of microbial degradation of cellulose
by their within-level mean response and treat the ordered vari-
able as continuous. The inclusion probabilities given in Table 3
for the BSS–ANOVA model’s main effects are fairly similar
to those for the model of Linkletter et al. Five variables have
posterior inclusion probabilities equal to 1.00 for both mod-
els: anhydrite permeability (ANHPRM), borehole permeabil-
ity (BHPRM), bulk compressibility of the brine pocket (BP-
COMP), halite porosity (HALPOR), and WMICDFLG. This
set of important variables is consistent with previous analyses
of this model using stepwise regression approaches (Helton et
al. 2000; Storlie and Helton 2007).

The posterior mean curves from the BSS–ANOVA model for
several predictors are plotted in Figure 3. Note that because of
the BSS–ANOVA decomposition, the estimates of the main ef-
fect curves are interpretable by themselves; there is no need to
numerically integrate over the other predictors, as in partial de-
pendence plots (Hastie, Tibshirani, and Friedman 2001). The
effects for BPCOMP and BHPERM are positive; increasing
BPCOMP increases the amount of brine that leaves the brine
pocket for each unit drop in pressure, and increasing BHPRM
both reduces the pressure in the repository and reduces resis-
tance to flow between the brine pocket and the repository. These
effects result in increased brine flow into the repository through
the borehole. Positive effects also are indicated for ANHPRM
and HALPOR, which reduce resistance to flow in the anhydrite
and halite, thereby increasing brine flow from the marker beds.
Also note the flat effect from ANHPRM for the first half of
its range, which occurs because it needs to exceed a thresh-
old before the permeability becomes sufficient to counteract the
pressure in the repository and allow for brine to flow from the
marker beds. There is also an overall negative effect when mov-
ing from level 1 to level 2 and then to level 3 for the microbial
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Table 3. Comparison of variable importance for the WIPP data set

BSS–ANOVA Linkletter
Inc. Prob.

BSS–ANOVA best model
L2 normInc. Prob. L2 norm

ANHPRM 1.00 (0.43, 1.10) 1.00 (0.41, 0.89)
BHPERM 1.00 (1.59, 3.13) 1.00 (1.81, 2.88)
BPCOMP 1.00 (0.78, 1.67) 1.00 (0.83, 1.45)
BPPRM 0.08 (0.00, 0.03) 0.01 –
HALPOR 1.00 (0.56, 1.67) 1.00 (0.58, 1.09)
HALPRM 0.46 (0.00, 0.10) 0.03 –
SHPRMCLY 0.28 (0.00, 0.07) 0.01 –
SHPRMSAP 0.12 (0.00, 0.03) 0.07 –
SHPRNHAL 0.11 (0.00, 0.04) 0.00 –
SHRBRSAT 0.66 (0.00, 0.14) 0.03 (0.01, 0.13)
WMICDFLG 1.00 (0.66, 1.55) 1.00 (0.80, 1.57)
BPCOMP × WMICDFLG 1.00 (0.41, 0.99) – (0.44, 0.92)
BPCOMP × BHPERM 0.93 (0.00, 0.21) – (0.04, 0.34)
SHPRMSAP × WMICDFLG 0.85 (0.00, 0.18) – (0.02, 0.15)
SHRGSSAT × SHPRNHAL 0.60 (0.00, 0.10) – (0.01, 0.12)

NOTE: “Inc. Prob” refers to the posterior inclusion probability; “L2 norm” to the posterior 95% interval of
∫ 1

0 f 2
j (s)ds.

degradation flag (WMICDFLG), as shown in Figure 4(b); this
is because the more microbial gas that is generated, the higher
the repository pressure, which discourages brine inflow.

The inclusion probabilities for the remaining variables are
<0.10 using the model of Linkletter et al. (2006). Our
BSS–ANOVA model identifies an additional main effect—

(a) (b)

(c) (d)

Figure 3. Raw data versus main effect curves [i.e., fj(x)] for the WIPP data: (a) ANHPRM, (b) BHPERM, (c) BPCOMP, and (d) HALPOR.
The solid lines are the medians, and the dashed lines are 95% intervals.
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(a) (b)

(c) (d)

Figure 4. Interaction plots for BPCOMP × WMICDFLG [panels (a) and (b)] and BPCOMP × BHPERM [panels (c) and (d)]. Panels (a) and
(c) give the posterior mean of fjk(xj, xk), and (b) and (d) give the posterior means of fj(xj) + fk(xk) + fjk(xj, xk).

residual brine saturation in the shaft (SHRBRSAT)—with in-
clusion probability 0.66. This association is somewhat surpris-
ing, because the shaft seals are quite effective, and so the flow
is unlikely to go down the shaft. This is a topic of ongoing
study.

The inclusion probabilities for the BSS–ANOVA model’s
main effects are equal to or greater than those of the model
of Linkletter et al. for each predictor. This may be due to the
fact that when a variable is included in the Gaussian process
model, all interactions must be included, whereas the additive
model can simply add a main effect curve. The posterior mean
curves in Figure 3 are fairly smooth, suggesting that low-order
polynomial fits are adequate. Because the priors for these low-
order polynomials are vague under the BSS–ANOVA model,
the model is able to essentially reduce to quadratic regression
for these predictors. This fit is very different than that of Lin-
kletter et al.’s model, which for most draws is a full Gaussian
process in these five dimensions. For these data, DIC prefers
the BSS–ANOVA decomposition (DIC = 362; pD = 68.4) over
that of Linkletter et al.’s model (DIC = 375; pD = 65.3). Note
that we do not use DIC for variable selection; rather, we use the
Bayesian variable selection algorithm described in Section 3.
We use DIC to compare the fits of the nonnested BSS–ANOVA
and Gaussian process models, both of which average over sev-
eral models defined by the binary inclusion indicators.

Of the 55 possible two-way interactions in the BSS–ANOVA
model, 4 have an inclusion probability > 0.5 (Table 3). More-
over, the f0 term for higher-order terms is included only 7% of
the time. The interaction with the highest inclusion probability
(1.00) is the interaction between BPCOMP and WMICDFLG.
Figures 4(a) and (b) plot the fitted values (posterior mean, av-
eraging over all models) of the interaction effect for this pair
of predictors. Figure 4(a) clearly demonstrates the constraints
of the BSS–ANOVA model for interactions. The curve for each
level of WMICDFLG integrates to 0, and the sum of the three
curves equals 0 for each value of BPCOMP. Figure 4(b) il-
lustrates the sum of the interaction and main effect curves.
It shows an increasing trend for BPCOMP for each level of
WMICDFLG; however, the trend is nearly flat when WMICD-
FLG equals level 3, implying microbial degradation of cellu-
lose, plastic, and rubber. This is a reasonable implication, be-
cause the gas produced by the degradation could produce suf-
ficient pressure to make brine inflow negligable for this range
of BPCOMP values. Figures 4(c) and (d) plot the fitted values
for the interaction between BPCOMP and BHPERM, which has
the second-largest inclusion probability (0.93). Note that in the
upper right corner, the interaction indicates a decrease in brine
inflow from the additive effects. This is very interesting, be-
cause at high values of BHPERM and BPCOMP, so much brine
flows down the borehole that the repository saturates and rises
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to hydrostatic pressure, which reduces brine inflow from the
brine pocket. Although these important interactions have not
been studied in previous analyses of this problem, they could
provide insight into and/or confirmation of models.

We measure variable importance with the posterior 95% in-
terval of the L2 norms of fj and fkl,

∫ 1
0 fj(s)2 ds and

∫ 1
0

∫ 1
0 fkl(s1,

s2)
2 ds1 ds2, respectively. The L2 norms are proportional to the

proportion of variation in the model explained by each term. We
approximate these integrals by taking the sum at the n = 300
design points. The L2 norm intervals given in Table 3 show
that of the predictors included with probability 1.00, BHPRM
generally explains the largest proportion of the variance in the
fitted function. In addition, even though there are interactions
with probability > 0.5, these terms explain less variation in the
fitted surface than the important main effects. This sensitivity
analysis accounts for variable selection uncertainty; that is, the
L2 norm is computed at every MCMC iteration, even at itera-
tions that exclude the variable. Another common approach to
sensitivity analysis is to first select the important variables, and
then compute the L2 norms for the important variables using the
model including only the selected variables. To illustrate how
these approaches differ, we refit the BSS–ANOVA model using
only the variables with inclusion probability > 0.5. The result-
ing L2 norms are given in Table 3 (under “BSS–ANOVA best
model”). The intervals for this model are generally narrower
than the intervals from the full model, demonstrating that ac-
counting for variable selection uncertainty in sensitivity analy-
sis gives wider, more realistic posterior intervals.

In Section 3 we develop a method for selecting the hyperpa-
rameter λ, which controls the strength of the priors of the vari-
ances. Based on these results, we recommend using λ = 2. But
for these data, the posterior inclusion probabilities are robust to
the selection of λ. Consequently, we refit the model with λ ∈
{1,2,3}; the posterior mean number of variables in the model
[i.e., the posterior mean of

∑p
j=0 I(τj > 0) + ∑

k<l I(τkl > 0)]
is 16.4 with λ = 1, 14.8 with λ = 2, and 13.4 with λ = 3. In
addition, for all three choices of λ the same subset of terms
with inclusion probability > 0.5 are identified, with the sole ex-
ception that HALPRM is included in the model with inclusion
probability 0.51 with λ = 1, compared with 0.46 with λ = 2.

7. DISCUSSION

In this article we present a fully Bayesian procedure for vari-
able selection and curve fitting for nonparametric regression.
Our model uses the smoothing splines ANOVA decomposition
and selects components through stochastic search variable se-
lection. We tune the model to have a desired false-positive rate.
Our simulation study demonstrates that the Bayesian model has
advantages over other nonparametric variable selection models
in terms of both prediction accuracy and variable selection. The
model is used to build an emulator for complex computer model
output.

Another challenge in the analysis of complex computer
model output is to jointly model computer model output and
actual field data. A common approach to this is to model both
the true response and the bias between field and simulated data
with separate Gaussian processes. In this case, our approach
could be used to identify important variables for both Gaussian

processes, that is, to identify conditions that affect the true
process and identify potentially different variables that predict
a discrepancy between simulated and real data. Moreover, al-
though here we applied our method to the deterministic WIPP
model, our simulation study suggests that our BSS–ANOVA
model also is adept in estimating the mean response for data
with random errors.
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APPENDIX

A.1 Approximate Expected log Odds of π = 1

For the univariate nonparametric model presented in Sec-
tion 2.1, integrating over f and σ 2 gives

p(γ = 1|y, τ )

p(γ = 0|y, τ )

= |τ 2� + I|−1/2
(

1 − y′(�−1/τ 2 + I)−1y
y′y + b

)−(n+a)/2

. (25)

Assuming that the data are standardized, so that y′y = n, and
assuming that a = b, for large n, we have

log
p(γ = 1|y, τ )

p(γ = 0|y, τ )

≈ −1

2
log |τ 2� + I| + 1

2
y′(�−1/τ 2 + I)−1y. (26)

Taking the expected value with respect to y ∼ N(0, I) gives

E

[
log

p(γ = 1|y, τ )

p(γ = 0|y, τ )

]

= −1

2
log |τ 2� + I| + 1

2
trace[(�−1/τ 2 + I)−1] (27)

= −1

2

n∑
i=1

log(1 + τ 2di) + 1

2

n∑
i=1

τ 2di

1 + τ 2di
, (28)

where d1, . . . ,dn are the eigenvalues of �. Recalling that � is
scaled so that trace(�)=

∑n
i=1 di = n, a first-order Taylor series

at τ 2 = 0 gives E[log p(γ=1|y,τ )
p(γ=0|y,τ )

] ≈ −nτ 2.
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A.2 Variable Descriptions for the Two-Phase Fluid
Flow Example

ANHPRM: Logarithm of anhydrite permeability (m2).
BHPRM: Logarithm of borehole permeability (m2).
BPCOMP: Bulk compressibility of the brine pocket (Pa−1).
BPPRM: Logarithm of intrinsic brine pocket permeabil-

ity (m2).
HALPOR: Halite porosity (dimensionless).
HALPRM: Logarithm of halite permeability (m2).
SHPRMSAP: Logarithm of permeability (m2) of the asphalt

component of the shaft seal (m2).
SHPRMCLY: Logarithm of permeability (m2) for the clay

components the of shaft.
SHPRMHAL: Pointer variable (dimensionless) used to select

permeability in the crushed salt component of the shaft seal at
different times.

SHRBRSAT: Residual brine saturation in the shaft (dimen-
sionless).

WMICDFLG: Pointer variable for microbial degradation of
cellulose. WMICDFLG = 1, 2, and 3 implies no microbial
degradation of cellulose; microbial degradation of only cellu-
lose; and microbial degradation of cellulose, plastic, and rub-
ber.

[Received June 2007. Revised August 2008.]
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