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During screening and 
characterization the emphasis 
is on identifying factor effects.

What are the important design 
factors?

For this purpose power is an 
ideal metric to evaluate 
design suitability.
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One Replicate of 23 Full Factorial 
C = (XTX)-1 matrix
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The design determines the standard error of the coefficient:
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NonCentrality Parameter
23 Full Factorial Δ=2 and σ=1

( )( )

i
i

i 2 2
ii ii

2

2noncentrality  = 
c ˆ c ˆ

1

0.125 1

1 2.828
0.3536

Δ
β

=
σ σ

=

= =

The reference t distribution assumes the null hypothesis of 
Δ = 0.  The noncentrality parameter (2.828) defines the t 
distribution under the alternate hypothesis of Δ = 2.
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Factorial Design – Power
23 Full Factorial Δ=2 and σ=1

noncentral tα=0.05,df=4 with noncentrality parameter of 2.828

Power = 57.2%
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Factorial Design – Power
23 Full Factorial Δ=2 and σ=1

One Replicate
Power is reported at a 5.0% alpha level to detect the specified signal/noise ratio.
Recommended power is at least 80%
Signal (delta) = 2.00 Noise (sigma) = 1.00 Signal/Noise (delta/sigma) = 2.00

A B                    C
57.2 %           57.2 %            57.2 %

Two Replicates
Power is reported at a 5.0% alpha level to detect the specified signal/noise ratio.
Recommended power is at least 80%.
Signal (delta) = 2.00 Noise (sigma) = 1.00 Signal/Noise (delta/sigma) = 2.00

A                    B                    C
95.6 %           95.6 %            95.6 %
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Conclusions

During screening and 
characterization (factorials) 
emphasis is on identifying 
factor effects.

What are the important design 
factors?

For this purpose power is an 
ideal metric to evaluate 
design suitability.

Factorial DOE
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When the goal is optimization 
emphasis is the fitted surface.

How well does the surface 
represent true behavior?

For this purpose precision 
(FDS) is an good metric to 
evaluate design suitability.
(Assuming model adequacy; 
i.e. insignificant lack of fit.)
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1. Estimate the designed for polynomial well.

2. Give sufficient information to allow a test for lack of fit.
Have more unique design points than coefficients in the model.
Provide an estimate of “pure” error.

3. Remain insensitive to outliers, influential values and bias from
model misspecification.

4. Be robust to errors in control of the component levels.

5. Provide a check on model assumptions, e.g., normality of errors.

6. Generate useful information throughout the region of interest,
i.e., provide a good distribution of .

7. Do not contain an excessively large number of trials.
( ) 2ˆVar Y σ

Design Properties
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FDS
Fraction of Design Space

Fraction of Design Space:
Calculates the volume of the design space having 
a prediction variance (PV) less than or equal to a 
specified value.
The ratio of this volume to the total volume of the 
design volume is the fraction of design space.
Produces a single plot showing the cumulative 
fraction of the design space on the x-axis (from 
zero to one) versus the PV on the y-axis.
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FDS – PV
Fraction of Design Space

Prediction Variance:

PV is a function of:

x0 – the location in the design space (i.e. the x 
coordinates for all model terms).

X – the experimental design (i.e. where the runs 
are in the design space).

( )
( ) ( ) 10
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ˆvar −
= = T T

y
PV x x X X x
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FDS – StdErr
Fraction of Design Space

Prediction standard error of the expected value:

( )
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= = T T

y
PV x x X X x

s
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0 0= =ys
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FDS Plot
Fraction of Design Space

1. Pick random points in the design space.

2. Calculate the standard error of the expected value

3. Plot the standard error as a fraction of the design space.
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FDS – StdErr
Two-Factor Face Centered CCD

FDS Graph
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Mixture Simplex 
Quadratic Model

Most of the action occurs 
on the A-C edge 
because of the AC 
coefficient of 16.  The 
quadratic coefficient of 
16 means that the 
response is 4 units 
higher at A=0.5, C=0.5 
than one would expect 
with linear blending.
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Mixture Simplex 
Quadratic Model
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This illustrates the 
quadratic blending 
along the A-C edge 
as C increases from 
zero to one.

ŷ 4A 4B 8C 16AC= + + +
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Mixture Constrained
Design for Quadratic Model

Total = 1.0
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Mixture Constrained
Quadratic Model (1 replicate)

Power at 5 % alpha level for effect of
Term StdErr* VIF Ri-Squared 1 s 2 s 3 s

A 0.87 3.44 0.7094 5.0 % 5.0 % 5.0 %
B 0.87 3.44 0.7094 5.0 % 5.0 % 5.0 %
C 233.34 2722.29 0.9996 5.0 % 5.0 % 5.0 %

AB 2.86 2.19 0.5442 22.9 % 67.3 % 94.7 %
AC 258.98 1092.98 0.9991 5.0 % 5.0 % 5.0 %
BC 258.98 1092.98 0.9991 5.0 % 5.0 % 5.0 %

*Basis Std. Dev. = 1.0

Power is bottomed out at alpha!
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Define Precision
Half Width of the Confidence Interval

6. Generate useful information throughout the region of 
interest.

Question: Will predictions, using the quadratic model from 
this design, be precise enough for our purposes?

To know the truth requires an infinite number of runs; 
most likely this will exceed our budget.

So the question is how precisely do we need to 
estimate the response?

The trade off is more precision requires more runs.
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Define Precision
Half Width of the Confidence Interval

Confidence interval on the expected value:

The mean response is estimated and the precision of the 
estimate is quantified by a confidence interval:

We will use half-width of the confidence interval (δ) to 
define the precision desired:

( )ydf
y t s ˆ,2

ˆ
α±

( )ydf
t s ˆ,2
αδ =
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What Precision is Needed?
Confidence Interval Half-Width

Half-width of confidence interval:  
Input standard deviation estimate:  s

δ
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Mixture Constrained
Quadratic Model (1 replicate)

Want quadratic surface to represent the true 
response value within 10 with 95% confidence.

The overall standard deviation this response is 7.8.

( ) ( )
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t s

t s s s

s
StdErr FDS

s

.05 ,72

ˆ ˆ ˆ,2
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For 95% confidence 2.365, 10 &  7.8
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4.23 0.54
7.8
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= = =

= = =
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Mixture Constrained
Quadratic Model (1 replicate)

Design-Expert® Software

Min StdErr: 0.464
Max StdErr: 0.873
Constrained
Points = 10000
Reference X = 0.57
Reference Y = 0.540

FDS Graph
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57% of the design space has StdErr ≤ 0.54
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Mixture Constrained
Quadratic Model (2 replicates)

Power at 5 % alpha level for effect of
Term StdErr* VIF Ri-Squared 1 s 2 s 3 s

A 0.62 3.44 0.7094 5.0 % 5.0 % 5.0 %
B 0.62 3.44 0.7094 5.0 % 5.0 % 5.0 %
C 164.99 2722.29 0.9996 5.0 % 5.0 % 5.0 %

AB 2.02 2.19 0.5442 47.1 % 96.5 % 99.9 %
AC 183.12 1092.98 0.9991 5.0 % 5.0 % 5.0 %
BC 183.12 1092.98 0.9991 5.0 % 5.0 % 5.0 %

*Basis Std. Dev. = 1.0

Adding a replicate does little to increase power!
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Mixture Constrained
Why didn’t Power Increase?

Quadratic, linear or combinations of them model response. 
Model Coefficients are Correlated!

Individual coefficients can not be resolved! 
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Mixture Constrained
Quadratic Model (2 replicates)

Want quadratic surface to represent the true 
response value within 10 with 95% confidence.

The overall standard deviation this response is 7.8.
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Mixture Constrained
Quadratic Model (2 replicates)

Design-Expert® Software

Min StdErr: 0.328
Max StdErr: 0.617
Constrained
Points = 10000
Reference X = 1.00
Reference Y = 0.611

FDS Graph
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100% of the design space has StdErr ≤ 0.61
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Mixture Constrained
Quadratic Model (1 & 2 replicates)

FDS Graph

Fraction of Design Space

S
td

E
rr

0.00 0.25 0.50 0.75 1.00

0.000

0.250

0.500

0.750

1.000

FDS Graph

Fraction of Design Space

S
td

E
rr

0.00 0.25 0.50 0.75 1.00

0.000

0.250

0.500

0.750

1.000

FDS improves*; even though power doesn’t!
* doubling the design reduces StdErr by the sqrt(2)
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Precision Depends On

The size of the confidence interval half-width (δ):
A larger half-width (δ) increases the FDS.

The size of the experimental error σ:
A smaller σ increases the FDS.

The α risk chosen:
A larger α increases the FDS.

Choose design appropriate to the problem:
Size the design for the precision required.
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Conclusions

When the goal is optimization 
(usually the case for mixture 
design & RSM) emphasis is 
on the fitted surface.

How well does the surface 
represent true behavior?

For this purpose precision 
(FDS) is a good metric to 
evaluate design suitability.

During screening and 
characterization (factorials) 
emphasis is on identifying 
factor effects.

What are the important design 
factors?

For this purpose power is an 
ideal metric to evaluate 
design suitability.

Mixture Design and
Response Surface MethodsFactorial DOE
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Detecting a Difference of Δ
wherever it may occur

Δ

What is the probability of finding a difference ≥ Δ
if it occurs between any two points in the design space?



37

FPDS Plot
Fraction of Paired Design Space

1. Pick random pairs of points in the design space.

2. Calculate the standard error of the difference

3. Plot the standard error as a fraction of the design space.

( ) ( ) ( )( )1 2
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Revisit – Mixture Constrained
Design for Quadratic Model

Total = 1.0
0.1≤C≤0.0
1.0≤B≤0.0
1.0≤A≤0.0

A: A
1.000

B: B
1.000

C: C
1.000

0.000 0.000

0.000

StdErr of Design
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Mixture Constrained
Quadratic Model (1 replicate)

Want to detect a difference of 10 on a quadratic 
surface with 95% confidence.

The overall standard deviation this response is 7.8.

( ) ( )

( )

.05 ,72

,2

For 95% confidence 2.365, 10 &  7.8

10 2.365 4.23

4.23 0.54
7.8
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t s
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Mixture Constrained
Quadratic Model (1 replicate)

33% of the design space has StdErr ≤ 0.54
Design-Expert® Software

Min StdErr Diff: 0.00
Max StdErr Diff: 1.21
Constrained
Pairs = 100000
t(0.05/2,7) = 2.36462
Reference X = 0.144
Reference Y = 0.33

FPDS Graph
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Mixture Constrained
Quadratic Model (2 replicates)

Want to detect a difference of 10 on a quadratic 
surface with 95% confidence.

The overall standard deviation this response is 7.8.

( ) ( )
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.05 ,72
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For 95% confidence 2.086, 10 &  7.8

10 2.086 4.79

4.79 0.61
7.8
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Mixture Constrained
Quadratic Model (2 replicates)

86% of the design space has StdErr ≤ 0.61
Design-Expert® Software

Min StdErr Diff: 0.00
Max StdErr Diff: 0.85
Constrained
Points = 50000
t(0.05/2,20) = 2.08596
Reference X = 0.857
Reference Y = 0.61
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Mixture Constrained
Quadratic Model (1 & 2 replicates)

FPDS improvement

FPDS Graph
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Detecting a Difference of Δ Depends On

The size of the difference (Δ):
A larger difference (Δ) increases the FPDS.

The size of the experimental error σ:
A smaller σ increases the FPDS

The α risk chosen:
A larger α increases the FPDS.

Choose design appropriate to the problem:
Size the design to detect a difference of interest.
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Conclusions

When the goal is to detect a 
difference emphasis is on 
the fitted surface rather than 
the factors.

How well does the design 
support finding a difference?

For this purpose (FPDS) is a 
good metric to evaluate 
design suitability.

During screening and 
characterization (factorials) 
emphasis is on identifying 
factor effects.

What are the important design 
factors?

For this purpose power is an 
ideal metric to evaluate 
design suitability.

Mixture Design and
Response Surface MethodsFactorial DOE
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Sizing Mixture & RSM Designs
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Conclusion

FDS (with confidence interval half width, δ) 
and

FPDS (with the difference of interest, Δ) 

are better metrics than power for 
evaluating response surface and mixture 
designs; particularly constrained designs 

with non-orthogonal models.
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Special Thanks

For aid implementing FDS plots:

Christine M. Anderson-Cook

Heidi B. Goldfarb

Douglas Montgomery

Thank You for your attention!
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