
Lecture 8

The First-Scattered Distributed Source Technique

In a previous chapter, we discussed the decomposition of the transport solution into

its order-of-scatter components. If the scattering is isotropic or mildly anisotropic, the

collided components of the angular flux can be mildly anisotropic even if the uncollided

flux is extrememly anisotropic. For such problems it can be useful to treat the uncollided

component of the flux analytically, and use an approximate transport method to calculate

the collided component of the flux. This is often referred to as the first-scattered distributed

source technique because the effective inhomogeneous or distributed source for the collided

component of the angular flux is the scattering source due to particles that have scattered

for the first time. To demonstrate this, let us consider the following problem

µ
∂ψ

∂x
+ σtψ = σs

φ

4π
, x ∈ [0, x0], (1)

with boundary conditions,

ψ(0, µ) =
φ0

2π
δ(µ − 1) , µ > 0, (2a)

ψ(x0, µ) = 0 , µ < 0. (2b)

In order to decompose this problem into separate uncollided flux and collided flux prob-

lems, we first assume that the total flux is the sum of the uncollided and collided fluxes,
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respectively:

ψ = ψu + ψc . (3)

Substituting from Eq. (3) into Eq. (1), we get

µ
∂ (ψu + ψc)

∂x
+ σt (ψ

u + ψc) = σs
(φu + φc)

4π
. (4)

The uncollided flux consists of particles that have never interacted. If we set the scattering

source to zero, we will get the uncollided flux solution because any particle that interacts

will be effectively absorbed. Thus the uncollided flux satisfies

µ
∂ψu

∂x
+ σtψ

u = 0 , (5)

ψu(0, µ) =
φ0

2π
δ(µ − 1) , µ > 0, (6a)

ψu(x0, µ) = 0 , µ < 0. (6b)

From Eqs. (4) and (5), it follows that the collided flux satisfies

µ
∂ψc

∂x
+ σtψ

c = σs
φc

4π
+ σs

φu

4π
. (7)

ψc(0, µ) = 0 , µ > 0, (8a)

ψc(x0, µ) = 0 , µ < 0. (8b)

The uncollided flux is easily obtained analytically:

ψu =
φ0

2π
δ(µ − 1) exp (−σtx) , µ > 0,

= 0 , µ < 0. (9)
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Integrating the uncollided flux over all angles, we get

φu = φ0 exp (−σtx) . (10)

Substituting from Eq. (10) into Eq. (7), we obtain

µ
∂ψc

∂x
+ σtψ

c = σs
φc

4π
+ σs

φ0

4π
exp (−σtx) . (11)

It is clear from Eq. (11) that the contribution to the equation for the collided flux from

the uncollided flux takes the form of an effective inhomogeneous or distributed source. It

in fact physically represents the scattering source due to particles scattering for the first

time. This is the origin of the term, “first-scattered distributed source.”

It is also clear from Eqs. (8a), (8b), and (11), that the collided flux is not singular, and

is thereby far more ameanable to approximation via diffusion theory than the total flux.

Thus we use diffusion theory to calculate the collided flux and further assume diffusive

properties for the physical domain. Namely, we assume that σt = σs and that σtx0 = 1000

mean-free-paths. Replacing Eqs. (11), (8a), and (8b), respectively, with their diffusion

counterparts, we get

− ∂

∂x
D

∂φc

∂x
= σsφ0 exp (−σtx) , x ∈ [0, x0], (12)

φc − 2D
∂φc

∂x
= 0 , at x = 0, (13a)

φc + 2D
∂φc

∂x
= 0 , at x = x0, (13b)
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where we have used Marshak boundary conditions and expressed them in extrapolated

form. The homogeneous solution to Eq. (12) is linear:

φc
h = a+ bx , (14)

and the inhomogeneous solution is

φc
i = −φ0 exp (−σsx)

σsD
. (15)

Thus the total solution is expressed in the following form:

φc = a+ bx − φ0 exp (−σsx)

σsD
. (16)

The two constants, a and b, are determined by the boundary conditions. Substituting from

Eq. (16) into Eq. (13a), we get

a − 3φ0 − 2D (b+ 3σsφ0) = 0 ,

which simplifies to

a − 2Db = 5φ0 . (17)

Substituting from Eq. (16) into Eq. (13b), we get

a+ bx0 − 3φ0 exp (−σsx0) + 2D (b+ 3σsφ0 exp (−σsx0)) = 0 ,

which simplifies to

a+ b (x0 + 2D) = φ0 exp (−σsx0) . (18)
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Solving Eqs. (17) and (18), we get

a = φ0

[
5x0 + 10D + 2D exp (−σsx0)

x0 + 4D

]
, (19a)

b = −φ0

[
5− exp (−σsx0)

x0 + 4D

]
. (19b)

Substituting from Eqs. (19a) and (19b) into Eq. (16), we obtain the solution for the collided

scalar flux:

φc = φ0

[
5(x0 − x) + 10D + (x+ 2D) exp (−σsx0)

x0 + 4D
− 3 exp (−σsx0)

]
. (20)

Adding the uncollided and collided scalar flux solutions we obtain the total scalar flux

solution:

φ = φ0

[
5(x0 − x) + 10D + (x+ 2D) exp (−σsx0)

x0 + 4D
− 2 exp (−σsx0)

]
. (21)

If we use diffusion theory to compute the total flux solution, we get

φ = 4φ0

[
(x0 − x) + 2D

x0 + 4D

]
. (22)

Because of the large optical thickness of the slab, D and exp (−σsx0) are negligible

relative to x0. Thus the hybrid solution is well represented on the interior of the domain

by

φ = 5 (1− x/x0) , (23)

and the pure diffusion solution is similarly well represented by

φ = 4 (1− x/x0) . (24)
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A full transport solution for this problem indicates the the interior solution is indeed linear

(as it must be since the slab is highly diffusive) with an extrapolated value of five at the

left boundary and an extrapolated value of 0 at the right boundary. Thus we find that

the first-scattered distributed source strategy yields an essentially exact solution in terms

of both the angular and scalar fluxes in the interior of the slab. It does not yield the

correct solution for the angular flux in the boundary layer at the left face, but it yields a

surprisingly accurate solution for the scalar flux in this region. Since there is no boundary

layer at the right face, it also gives an essentially exact solution for the scalar flux solution

in this region. However, it cannot give the correct angular flux solution in this region

because the the exact vacuum boundary condition cannot be met.
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