
Lecture 14

Equivalence of the SN and PN−1 Methods

The purpose of this lecture is to demonstrate that the 1-D slab-geometry SN equations with

Gauss quadrature and a Legendre cross section expansion of degree N − 1 are equivalent

to the PN−1 equations. We begin with the SN equations:

µm
∂ψm

∂x
+ σtψm =

N−1∑
k=0

2k + 1

4π
(σkφk + qk)Pk(µm) , m = 1, N. (1)

Multiplying Eq. (1) by Pn(µm) and using the following recursion relationship,

µPn(µ) =
n+ 1

2n+ 1
Pn+1(µ) +

n

2n+ 1
Pn−1(µ) , (2)

we obtain

∂ψm

∂x

[
n+ 1

2n+ 1
Pn+1(µm) +

n

2n+ 1
Pn−1(µm)

]
+ σtψmPn(µm) =

N−1∑
k=0

2k + 1

4π
(σkφk + qk)Pk(µm)Pn(µm) , m = 1, N. (3)

Using the Gauss quadrature to integrate Eq. (3) over all directions, we get

n+ 1

2n+ 1

∂

∂x
〈ψPn+1〉 +

n

2n+ 1

∂

∂x
〈ψPn−1〉 + σt〈ψPn〉 =

N−1∑
k=0

2k + 1

4π
(σkφk + qk) 〈PkPn〉 , m = 1, N, (4)
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where 〈·〉 denotes quadrature integration over angle. Remembering that a Gauss SN set

exactly integrates all polynomials through degree 2N − 1, and that

2π

∫ +1

−1

Pn(µ)Pk(µ) dµ =
4π

2k + 1
δn,k , (5)

Eq. (4) reduces to the following two equations:

n+ 1

2n+ 1

∂φn+1

∂x
+

n

2n+ 1

∂φn−1

∂x
+ (σt − σn)φn = qn , n = 0, N − 2, (6a)

N

2N − 1

∂φN

∂x
+

N − 1

2N − 1

∂φN−2

∂x
+ (σt − σN−1)φN−1 = qN−1 . (6b)

Equations (6a) and (6b) are the PN−1 equations provided that φN = 0 To demonstrate

that this is in fact the case, we note that the Gauss points for an N -point quadrature are

the roots of PN(µ). Thus,

PN(µm) = 0 , m = 1,M, (7)

and

φN =
N∑

m=1

ψmPN(µm)wm = 0 , (8)

so Eq. (6b) is actually the correct equation for φN−1:

N − 1

2N − 1

∂φN−2

∂x
+ (σt − σN−1)φN−1 = qN−1 . (9)

This completes the demonstration that the 1-D slab-geometry SN equations with Gauss

quadrature and a Legendre cross-section expansion of degree N − 1 are equivalent to the
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PN−1 equations. However, this does not necessarily imply that the SN and PN−1 equations

give the same solutions. This will only be the case if the boundary conditions are equivalent.

We have previously discussed only Marshak conditions for the Pn equations. The SN

boundary conditions are equivalent to Mark boundary conditions for the PN−1 equations.

These conditions are defined for the PN−1 equations in terms of the Gauss SN quadrature

points and they require that the exact boundary conditions be approximately met via

collocation at the quadrature points. For instance let ψ̃ denote the Legendre expansion for

the angular flux associated with the PN−1 approximation:

ψ̃ =
N−1∑
n=0

2n+ 1

4π
φnPn(µ) , (10)

and let f(µ) denote the incident flux at a boundary. The Mark reflective condition requires

that ψ̃(µ) = ψ̃(−µ) at the Gauss quadrature points, while the Mark source/vacuum condi-

tion requires that ψ̃(µ) = f(µ) at the incoming Gauss quadrature points. As required, the

Mark conditions impose N/2 equations at each boundary. The Mark and Marshak reflec-

tive conditions are equivalent, but the source/vacuum conditions are not equivalent. To

give the reader some perspective, we note that the P1 Marshak source/vacuum condition

corresponds to an extrapolation length of 2
3σt

, while the Mark source/vacuum condition cor-

responds to an extrapolation length of
√

3
3σt

. The difference between Pn solutions obtained

with Marshak conditions and those obtained with Mark conditions rapidly decreases with

increasing n.
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