Lecture 3

Simple Solutions of the 1-D Transport Equation

1 The 1-D Monoenergetic Transport Equation

Consider the 1-D slab geometry, monoenergetic, transport equation with isotropic scatter-

ing:
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and p = cos@, where 0 is illustrated in Fig. 1. The boundary conditions for this equation

define ¢(zp, p) for > 0, and Y (zg, p) for p < 0.

1.1 Common Boundary Conditions
Vacuum Boundary Conditions:

Y(xp,p) =0 for u>0.
Reflective Boundary Conditions:

U(zp, p) = Y(xL, —p) for p>0.

1



X=X | X=X g

Figure 1: The direction variable, #. Note that the directional dependence is assumed to be
azimuthally symmetric.

Periodic Boundary Conditions:

Y(xp, ) = Y(xg, 1) ,for p>0.

Source Boundary Conditions:

Y(xr,p) =) for p>0.

2 Pure Absorber Solutions

Consider the following problem.

U(zr,p) = f(p) for p>0,
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The corresponding transport equation is
ug—f +0o,0=0.

Dividing the above equation by u, we get
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Note that we have a simple first-order ODE for each value of . The solution is a simple

exponential. To see this, we first multiply the above equation by e
oagz O,
en —+en —ah=0.
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The above equation can be re-expressed as
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So
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is a solution, or equivalently,
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The boundary conditions determine c.
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Thus our complete solution is

G, p) = flue wE for p> 0,

=0 ,for p < 0. (3)

Each ray is exponentially attenuated proportional to the distance that it travels from xp,

to x:

Figure 2: The distance s given z and p.



3 The Formal Solution with Scattering

Consider the following problem.

The equation to be solved is
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Use the integrating factor approach again:
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So the final solution is
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Note that if you know ¢(x), you need only perform an integral to get the solution, but
¢(z) is actually an integral of ¥ (z, ). This suggests that you might be able to iterate to
a solution. Specifically, you can use the order-of-scatter or Neumann series technique:

First we calculate the uncollided flux:
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and
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Next we calculate the first-scattered flux:
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Continue on



You calculate the n 4+ 1'th-scattered angular flux using the n’th-scattered scalar flux:
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Finally, add up the contributions to obtain the total angular flux:
O, p) =Y (@, ).
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This is very closely related to the basic iteration technique used in S,, codes.



