
Lecture 2

The Transport Equation

1 Transport Assumptions

1. Continuum point particles.

2. Binary Particle-Target interactions.

3. No particle-particle interactions.

4. Instantaneous collisions.

5. No macroscopic force fields.

2 The Boltzmann Equation

The Boltzmann equation with absorption and scattering can be expressed as follows:
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We next interpret each term. The term,

1

v

∂ψ

∂t
dP , (p/sec),

represents the time rate of change of the number of particles in the differential phase-space

volume, dP . The term,

Q dP, (p/sec),

represents the rate at which particles are created in the differential phase-space volume,

dP . The term,

∫ ∞
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′
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)
ψ
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Ω

′)
dΩ′ dE ′ dP , (p/sec),

represents the rate at which particles scatter into the differential phase-space volume, dP .

The term,

−→
Ω · −→∇ψ dP , (p/sec),

represents the rate at which particles advect out of the differential phase-space volume, dP ,

minus the rate at which particles advect into it. It is easier to understand this interpretation

if one integrates this term over an arbitrary spatial volume, V0, and uses the divergence

theorem to re-express that integral as a surface integral.
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where Γ+ denotes that portion of the surface on which
−→
Ω · −→n > 0, and Γ− denotes that

portion of the surface on which
−→
Ω · −→n < 0. The integral over Γ+ represents the rate at

which particles are advecting out of the volume, while the integral over Γ− represents the

negative of the rate at which particles are advecting into the volume. If we divide these

integrals by V0, and take the limit as V0 → 0, we recover the original gradient term. The

term,

σtψ dP , (p/sec),

represents the rate at which particles are removed from the differential phase-space volume,

dP , through either absorption or scatter.

Thus we see that the Boltzman equation simply states that the time rate of change in

the number of particles in dP is equal to the rate at which particles come into dP minus

the rate at which particles leave dP . It is therefore a particle conservation equation in

phase-space.

3 The Balance Equation

Integrating the Boltzmann equation over all angles and energies, we get

1

v

∂φ

∂t
= Q0 + S0 −

−→
∇·−→J − σtφ , (2)
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where φ and
−→
J are the energy-integrated scalar flux and current, respectively,

Q0 =

∫ ∞

0

∫
4π

Q dΩ dE , (3)

and

S0 =

∫ ∞

0

∫
4π

S dΩ dE . (4)

We can further reduce Eq. (2) by noting that if S dP represents the rate at which particles

in the differential spatial dV scatter into directions about
−→
Ω and energies about E, then

S0 must represent the rate at which particles are scattering within dV . Thus,

S0 = σsφ . (5)

Substituting from Eq. (5) into Eq. (2), and recognizing that σt = σa + σs, we obtain

1

v

∂φ

∂t
= Q0 −

−→
∇·−→J − σaφ . (6)

Equation (6) is called the balance equation, and represents a statement of particle balance

for particles of all directions and energies. The term,

1

v

∂φ

∂t
dV ,

represents the time rate of change of particles in dV . The term,

Q0 dV ,
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represents the rate at which particles are being created within dV . The term,

−→
∇·−→J dV ,

represents the net rate at which particles leave dV , i.e., the rate at which they leave minus

the rate at which they enter. The term,

σaφ dV ,

represents the rate at which particles are absorbed within dV .

4 Other Forms of the Boltzmann Equation

In this section we discuss the Boltzmann equation for charged-particles and the Boltzmann

equation for thermal radiation transport.

4.1 The Charged-Particle Transport Equation

The charged-particle transport equation is actually identical to that for neutrons except

that for Coulomb interactions (as opposed to nuclear interactions), the mean-free-paths

are extremely small and very small scattering angles are highly probable. The Coulomb

interactions are inelastic, so small scattering angles necessarily mean small energy losses

as well. The Coulomb interactions are usually treated with an asymptotic approximation
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to the Boltzmann scattering operator called the Fokker-Planck approximation, while the

standard Boltzmann scattering operator is used for the nuclear interactions. This strategy

leads to the Boltzmann-Fokker-Planck (BFP) equation.

µ
∂ψ

∂x
+ σtψ = S +

α

2

∂

∂µ

[
(1− µ2)

∂ψ

∂µ

]
+

∂

∂E
(βψ) + Q , (7)

The first Fokker-Planck operator is called the continuous scattering operator. It causes

particles to continuously scatter with a change in direction per unit pathlength equal to α

(steradians/cm). When one is approximating the Boltzmann scattering operator with the

Fokker-Planck operator, α is calculated in terms of the cross-section as follows:

α(
−→
r , E) = 2π

∫ E

0

∫ +1

−1

σs(
−→
r , E → E ′, µ0) (1− µ0) dµ0 dE ′ . (8)

Note from the upper integration limit in energy that we have assumed that particles only

downscatter, i.e., they lose energy in scattering events, but do not gain energy. This

is appropriate for relativistic charged-particle transport because particles that thermalize

are considered to be “absorbed”. Upscatter does occur at thermal energies. The second

Fokker-Planck operator is called the continuous-slowing-down operator. It causes particles

to continuously slow down with an energy loss per unit pathlength equal to β (MeV/cm).

When one is approximating the Boltzmann scattering operator with the Fokker-Planck

operator, β is calculated in terms of the cross-section as follows:

β(
−→
r , E) = 2π

∫ E

0

∫ +1

−1

σs(
−→
r , E → E ′, µ0) (E − E ′) dµ0 dE ′ . (9)
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Use of the continuous-slowing-down operator is not adequate at thermal energies. One

must also use a higher order term to obtain a Maxwellian equilibrium solution. We will

not consider thermal charged-particle transport here, but it does arise in plasma physics

modeling.

The same techniques used to solve the Boltzmann can be applied to solve the Boltzmann-

Fokker-Planck equation. In general, charged-particle transport is usually much more com-

putationally demanding than neutral particle transport because of the extreme anisotropy

of the scattering and the huge magnitude of the scattering cross-sections. Thus better

numerical methods must generally be used for charged-particle transport. We will later

describe solution techniques for the BFP equation in detail, and discuss Fokker-Planck

operators within the context of asymptotic transport approximations.

4.2 The Thermal Radiation Transport Equation

The equations of thermal radiation transport consist of two equations: a transport equation

and a material temperature equation. In particular, they are

1

c

∂I
∂t

= σs

∫
4π

I dΩ + σaB(T,E)− −→
Ω · −→∇I − σtI , (10)

and

Cv
∂T

∂t
=

∫ ∞

0

∫
4π

σa

(
I(

−→
Ω′ , E ′)− B(T,E ′)

)
dΩ′ dE ′ + q , (11)

7



where I is the angular intensity , σt is the total (absorption plus scattering) cross section,

σs is the scattering cross section, σa is the absorption cross-section, B(T,E) is the Planck

emission function, Cv is the heat capacity, and T is the material temperature, and q is an

inhomogeneous material energy source. The angular intensity is equal to the angular flux

multiplied by the particle energy, i.e., I(−→P ) = ψ(
−→
P )E. The equation is cast in terms of

I rather than ψ because photon and material internal energy are conserved in the thermal

radiation transport process, but photon number is not preserved. These equations simply

express the conservation of photon and material internal energy within each differential

phase-space volume in the problem domain. Photons are emitted isotropically (uniformly

in all directions) in proportion to the energy-averaged absorption cross section and the

material temperature raised to the fourth power. The emission energy spectrum is defined

by the Planck function (the black-body spectrum). Photons are absorbed by the material as

a function of the absorption cross section. The photon emission process tends to decrease

the material temperature and the photon absorption process tends to increase it. The

absorption-emission process is very much like scattering since the emission and absorption

are both proportional to the absorption cross section. In equilibrium, the intensity is equal

to the Planck function.

In the infrared regime, infrared transport can generally be performed using relatively

simple numerical methods. However, in the stellar regime, thermal radiation transport
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requires very sophisticated methods. At sufficiently high intensities, the radiation energy

and momentum deposition in the material can cause it to move, in which case one must

use the equations of radiation-hydrodynamics to describe the physics. The equations of

radiation-hydrodynamics express the conservation of material mass, the conservation of

total energy (radiation, material-internal, and material-kinetic), and the conservation of

total momentum (radiation plus material).
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