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Abstract

A new method for quasi-Newton minimization outperforms BFGS by combining a new least-
change update of the Hessian with a step-size estimate obtained from a Wishart model of
uncertainty. The Hessian update preserves accuracy from one iteration to the next. It is in the
Broyden family but uses a negative parameter, outside the convex range that is usually regarded
as the safe-zone for Broyden updates. Although full Newton steps based on this update tend to
be too long, excellent performance is obtained with step sizes estimated from a Wishart model
of Hessian uncertainty. In numerical comparisons to BFGS the new Statistical quasi-Newton
algorithm typically converges with about 20% fewer iterations and gradient evaluations and
10% fewer function evaluations on a suite of standard test functions. Our statistical framework
provides a simple way to understand differences among various Broyden updates such as BEFGS
and DFP and shows that these methods do not preserve Hessian accuracy while the new method
does. In fact, BFGS, DFP and all other updates with non-negative Broyden parameters tend to
inflate Hessian estimates and this accounts for their observed propensity to correct eigenvalues
that are too small more readily than eigenvalues that are too large. Numerical results on three

new test functions validate these conclusions.
Key Words: BFGS, DFP, negative Broyden family, Wishart model.

1 Introduction

Quasi-Newton methods for unconstrained optimization are important computational tools in many
fields of scientific investigation and are a standard subject in text books on computation, including
statistical computation (e.g., Chambers, 1977). The BFGS method, proposed individually by
Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970), is implemented in most
optimization software and is widely recognized as efficient. In theoretical investigations BFGS
is known as a special case of the Broyden class (Broyden, 1967). Some Broyden updates with

negative Broyden parameters have been found to produce faster convergence than BFGS updates



(e.g., Zhang and Tewarson, 1988; Byrd, Liu, and Nocedal, 1992) but, for various reasons, have not
been widely adopted. Indeed, Byrd et. al. conclude that “practical algorithms that preserve the
excellent properties of the BFGS method are difficult to design.” Nocedal and Wright (1999) state
that “the BFGS formula ... is presently considered to be the most effective of all quasi-Newton
updating formulae.” In our opinion, BFGS remains the most popular front-runner because of two
important unanswered questions: What is the “best” negative Broyden parameter and how should
initial step lengths be scaled when using negative Broyden parameters? This paper answers these
questions by formulating a least-change problem whose goal is to approximate Newton directions
and by estimating step sizes through a statistical model of Hessian uncertainty. Originally we
derived the new least-change update by incorporating a prior distribution into the model for Hessian
uncertainty as discussed in (Section 7.1). Whereas both the Hessian update and the step size were
obtained from statistical considerations, the new algorithm is called the Statistical Quasi- Newton
(SQN) method.

1.1 Quasi-Newton methods

Quasi-Newton methods solve the unconstrained optimization problem

min f(z), x €R",

T

in which both the objective function f(z) and its gradient g(z) = Vf(z) are easy to compute but
Newton’s method is not applicable because direct evaluation of the Hessian matrix G(z) = V2f(z)
is practically infeasible. Quasi-Newton methods build up an approximate Hessian matrix using
successive gradient evaluations. The general method iterates between a minimization (M) step
consisting of a one-dimensional search for a good point along an approximate Newton direction
and an estimation (E) step consisting of an update to the Hessian estimate. A more specific

definition follows.

Generic quasi-Newton algorithm: Select a starting point zg € R™ and a symmetric
positive definite estimate, By, of the Hessian matrix G(zo). Let go = g(zo) and iterate

over k =0,1,2,... the following two steps.

M-Step. Carry out a line search from the point z; in the direction —B, L9k, to obtain
a step —skBlzlgk (with s, > 0) that satisfies the Wolfe conditions for sufficient
decrease of the function and for curvature (see (2) and (3) below). The new

evaluation point and gradient are
-1
Try1 = 2k — sk B, gr  and  gr1 = g(Tp41)-

E-Step. Estimate the Hessian matrix at x4 using the quantities By, zk, k41, gk, and

gk+1. The estimate, By 1, must be symmetric and positive definite and must satisfy



the quasi-Newton condition
By 10k = Yk, (1)
where 0y = xp11 — 2 and Vg = gk+1 — Gk-

Condition (1) requires the vector of estimated second derivatives in the current step direction,
By 4161/ sk, to agree with the corresponding numerical second derivatives -y /sy. Different principles
have been used to derive Hessian update formulae but the general goal has been to minimize the
change from By to Bg41 in some sense. This paper derives an update that minimizes change in a
canonical sense and provides a model-based estimate for the step size sg.

The Wolfe conditions referenced in the M-step are two standard requirements to ensure that
sufficient progress is made toward the optimum even when the line search is not required to find

the exact minimum in the given search direction. The Wolfe sufficient decrease condition,

f(@r1) < fzk) — c15k9, By ' gk (c1 €(0,1), say ¢; =107%), (2)

requires a reduction in f(z) that is at least a fraction ¢; of that predicted by the directional

derivative —gp B Lgr. The Wolfe strong curvature condition

\Gh41(By 'gk)| < 24 (B g1, (c2 € (c1,1), say c; =0.9), (3)

requires at least a proportional decrease in the magnitude of the derivative in the search direction.
Some algorithms impose a weaker curvature condition in which the absolute value is removed from
the left side of (3). Nocedal and Wright (1999, p. 37-41) discuss the importance of the Wolfe
conditions in assuring that sufficient progress is made on each iteration.

The best-known class of Hessian estimates used in the M-step are the rank-two Broyden updates
(Broyden, 1967):

Byor6,Br iy,

Bk 1= Bk — + Ckawl y 4
+ & Bpdr, Ok k )
where
Yk By.og
WE = — 5
6;67,6 (s;ch(Sk ( )

and ¢y, is a scalar parameter to be determined. The usual parameterization takes c; = ¢y, (6, By0r)
where ¢ is known as the Broyden parameter. However, our exposition is more natural with the

parameterization

cx = (M — 1) (0p ) (6)

where the parameter )\ is shown in Section 3 to regulate the inflation of By relative to B. BFGS
is the Broyden update with A\, = 1 (i.e., ¢p = cx = 0).



There is a critical value A} such that By is positive definite for any A\, > A =1 — r,?l where

re = B W _ G
Y30k 03, Bi6y,

It can be shown that r; > 0 by making use of the curvature condition (3) and the Cauchy-Schwarz
inequality. If 7, = 0 then Af is taken to be —oo.
1.2 Preview of a statistical quasi-Newton method

The SQN method developed in this paper is remarkably simple and effective. This section briefly
defines SQN and demonstrates its superiority to BFGS.

Statistical quasi-Newton (SQN) algorithm: Follow the generic quasi-Newton al-

gorithm with the following additional specifications.

E-Step. Update By using a Broyden update (4)-(6) with

Ax = max{0,1 — (1 —¢e)r, '} (7)
where € is a small positive constant (e.g., ¢ = 107%) to guarantee that By,
remains positive definite. The corresponding Broyden parameter ¢ = (Ax —

1) (0},vk) / (0}, Bdy) is negative because (3) implies 0}y, > 0.

M-Step. Begin the line search from an initial evaluation point —3(A;) B, 'g) where

! -1
Je11 B 19641

§(\) = — -
Gor1 B gert + (L= M) () (g1 Bryon)?

<1 (8)

The shortened initial step is crucial to improving the performance of Broyden updates with
negative Broyden parameters. Zhang and Tewarson (1988) use § = 1 and comment that their
negative Broyden algorithm improves iteration counts but “less or no savings are achieved on the
number of function evaluations” because initial steps are often too long to provide a sufficient
decrease in the function value. SQN corrects this problem by effectively estimating the optimal
step size for the given search direction.

Figure 1 compares the performance of SQN to BFGS on a standard set of small-dimensional
test functions given by Moré, Garbow and Hillstrom (1981). For each of twenty test functions, the
plot shows the number of iterations until convergence of SQN relative to BFGS. Test functions are
listed on the right axis with the dimension of z given in parenthesis. Each point in the plot shows
the iteration ratio for minimization from a given starting point zy. Typically, ten starting points
are shown for each function. The solid curve connects average iteration ratios. The overall average
is 79%, indicating that SQN typically requires 21% fewer iterations than BFGS on these test cases.

Specifications of the testing setup are given in Section 5 along with more detailed results on these
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Figure 1: Iteration counts for SQN relative to BFGS on 20 problems of small dimension. On

average SQN converges in 21% fewer iterations on these cases.

cases and additional numerical tests. The experiment underlying Figure 1 closely follows that of
Zhang and Tewarson (1988) who also achieved 21% iteration improvement on this set of problems
using their SDQN algorithm.

Figure 2 shows that SQN’s efficiency relative to BFGS actually improves with the difficulty of
the problem and the improvement holds not just for iteration counts but also for counts of function
and gradient evaluations. Demonstrating improvement on function and gradient counts is important
because otherwise iteration improvement could come at the price of worse efficiency overall. Each
panel in the display has one point for each of the 44 Moré test problems listed in Tables 2 and 3 of
Section 5. SQN appears to obtain a cumulative advantage over BFGS as additional iterations offer

further opportunities for improvement. Performance on easy problems with few iterations is often



16 32 64 128 256 512

\ \ \ ! ! ! ! ! ! \ \ \ \ \
iterations function evaluations gradient evaluations

o
32
< 0 Dg g o % a, u
— () )
c 045 00¢ ® oo O O @) @
8 o890 00 ©° %v o © o8 5o ©
o) o) o) o) N
% o o %@ © 00 O 0
0] 0o o 5
L 80 — ®) O o ) L
[a1] 0 O ©
~ O OO
< © S
: ° ° 5
© 60 o -
2 o e
w
0
I I I I I I I I I I I I
16 32 64 128 256 512 16 32 64 128 256 512

BFGS count (log scales)

Figure 2: Improvement in SQN efficiency with problem difficulty for each of three counts—
iterations, function evaluations and gradient evaluations. Each point represents the average perfor-
mance of SQN and BFGS on a given problem from multiple starting points. The data come from
Tables 2 and 3 in Section 5.

dominated by the first iteration in which a poor choice of By produces a poor search vector for any
quasi-Newton algorithm. In harder problems these startup effects wash out so that the advantage
of SQN over BFGS becomes more apparent. The trend curves in Figure 2 highlight this tendency.
The curves are robust local regression smoothes (Cleveland, 1979) that follow the trends without
being unduly influenced by outlying points. The trend is strongest for the number of iterations to
convergence.

The remainder of the article is arranged as follows. Section 2 gives a select history of ideas in
quasi-Newton development with emphasis on the least change principle and argues for a particular
scale-free matrix as the most appropriate measure of change in consecutive Hessian estimates.
Section 3 introduces a transformation into canonical coordinates, derives (4)—(7) as the least-change
update and shows that the update preserves Hessian accuracy from one iteration to the next.
Section 4 introduces a Wishart model to describe Hessian uncertainty and uses it to derive (8)

as an estimate of the optimal step size. Section 5 compares performance of SQN to BFGS on



the Moré test problems. Section 6 compares performance on three new test functions designed to
verify our understanding of why SQN is better than other Broyden updates. Section 7 discusses
a statistical formulation of the least-change principle used to derive SQN, explores connections to

other least-change derivations and concludes with two ideas for future research.

2 Least-Change Updates

Fletcher’s (1994) overview of methods for unconstrained optimization is an excellent introduction
to the huge literature on quasi-Newton methods. This section briefly reviews the historical ideas
that led to the least-change principle on which the most influential quasi-Newton methods are
based. A line of reasoning is then given to suggest a certain relative change matrix as being the

most appropriate measure of change for the goal of approximating Newton search directions.

2.1 Historical developments

Crockett and Chernoff (1955) stated the idea of building up a Hessian estimate iteratively so as to

approximate the Newton method:

..., it is possible to obtain, from the successive approrimations, certain relevant infor-
mation about terms of order higher than those actually computed, and to conveniently

use this information to improve the rate of convergence.

The basic idea of Broyden (1965) as articulated in Broyden (2000) was that the Hessian update
“Should therefore require, if possible, ..., no change to By in any direction orthogonal to dy.”
Broyden was solving a system of differential equations and his mathematical formulation [Bj41d; =
v, and (Bgy1 — Bg)g = 0,Vq : ¢'6; = 0] produces an asymmetric update that is not appropriate for
the problem min f(x).

Taking a more mathematical approach, Broyden (1967) dropped the “orthogonality” part of his
original intuition and sought instead a low-rank Hessian update. This led to the Broyden class (4)
of symmetric rank-two updates. Subsequent researchers also focused on making small modifications
to the Hessian without explicit concern for the space orthogonal to the search direction. Greenstadt

(1970), for example, wrote,

Let us ask for the “best” correction in some sense. There are many possible choices to
make, but a good one is to ask for the smallest correction, in the sense of some norm.
To a certain extent, this would tend to keep the elements of B, 1] from growing too

large, which might cause an undesirable instability.

The extensive review of LuksSan, Spedicato and Vlcek (1999) emphasizes the importance of the least

change principle in deriving many of the most effective quasi-Newton methods.



The important special case of a Broyden update with A\ = 1 is called BFGS after the four
authors who individually published the update formula in 1970. Goldfarb (1970) worked with the

scaled difference of inverse Hessian estimates
By =W'Y? (B}, - B, ) W'/? 9)

where the symmetric matrix W satisfies Wy, = «y;. He derived the BFGS update by using Green-
stadt’s (1970) results to minimize the Frobenius norm || E}, ||r = [tr (E;}VE;SV)]I/ 2 over the class of
symmetric matrices By that satisfy the Newton condition (1). Thus, BFGS is a least-change
update. But the metric of change is important. For example, using the same W but minimizing

the Frobenius norm of
Bw =W (Byy1 — By) W2 (10)

produces the Broyden update with Ay = 1+ 0} B0y /(0},7%). This is known as DFP after Davidon
(1959) and Fletcher and Powell (1963) and is generally regarded as inferior to BFGS.

Fletcher (1970) advocated restricting attention to Broyden updates that are convex combina-
tions of the BFGS and DFP updates because such updates satisfy a monotone eigenvalue property
when used to minimize quadratic functions. Recently, however, various choices of negative Broy-
den parameters (¢, < 0 corresponding to Ay < 1) have been studied. See, for example, Zhang
and Tewarson (1988), Byrd, Liu, and Nocedal (1992), Luksan (1992), Fletcher (1994) and Mifflin
and Nazareth (1994). These authors report that negative Broyden parameters can reduce iteration
counts, although in some cases this comes at the cost of increased numbers of function evaluations.
The potential for improvement relative to BFGS seems to be best if the initial Hessian estimate is
much too large. However, no clear and consistent principle has been articulated for selecting the
best Broyden parameter and robust improvement over BFGS has been elusive. Indeed, Zhang and
Tewarson (1988) concluded that such investigations have not shaken the position of BFGS as the

most popular front-runner.

2.2 A new least-change metric

Minimizing the change from Bj to By, is a generally accepted principle. Section 7.1 discusses
why the principle is valid even in the context of a statistical model for Hessian uncertainty. There
is not agreement, however, on how to measure the distance from By to By1. Zhao (1992) derives
ten different optimal updates by considering five possible matrix norms applied to two different
matrices that measure change. The metric for measuring change is empirically important: BFGS
outperforms DFP even though the two are least change duals derived from Ejj; and Ey respectively.

The proliferation of quasi-Newton updates suggests that a refinement of the generic least-
change principle is needed. We offer the following line of reasoning as justification for minimizing

change as measured by a particular scale-free matrix Ep, defined in (11) below.



1. The search directions —Bk_ilglﬁ_l of a quasi-Newton method should closely approximate the
Newton directions —G~!(zy,1)gx+1, and therefore Hessian accuracy is most appropriately

measured on the inverse scale.

2. Suppose B, ! approximately preserves the curvature information obtained in recent iterations;
that is,

Bil'yg—i~ i i=1,2,...

where the approximations tend to be better for smaller ;. The new estimate By, should
maintain these approximations as closely as possible while incorporating the new curvature
information as specified by the quasi-Newton condition (1). In particular, the update should

be small along directions y,_1, Yx—2, -..; that is
(Bt = Bp') mei =0 (i=1,2,...).

But, in the context a quasi-Newton algorithm, the {y;_;} are not known so the goal must be
to make (Bk_i1 — B;') small in every direction. The update from By to B; is an exception
because By is typically set arbitrarily. Thus, it seems reasonable to use pre-scaling (Shanno

and Phua, 1978) or some other aggressive updating technique for the initial Hessian update.

3. The deviation from B, ! to B, 4}1 should be normalized so that the problem of finding the
best update becomes affine invariant. Greenstadt (2000) argues that this is desirable “in that
it renders harmless the accidents of coordinate selection in a given problem.” Symmetric
scaling gives G (z)'/? (Bkj1 — B, ') G(zx)/? as the best matrix to measure relative change.
However, G(zy) is unknown so we substitute the best available estimate. The current estimate
By, could be used but By is a better choice because it will incorporate the most recently
obtained curvature information. (This reasoning assumes that curvature differences from xy
to xp41 are inconsequential relative to the error in approximating G(zy) by Bj.) Therefore,
a close approximation to the Newton method is obtained by minimizing the “size” of the
scale-free matrix

_ pl/2 -1 -1 1/2
E = Blc+1 (Bk+1 - Bk ) Bk+1'

4. A matrix norm defines the “size” of E. For many norms, F is equivalent to
Ep = B;,'/* (Byy1 — By) By '/? (11)

in the sense that || E|| = ||Eg||. This equivalence holds for any matrix norm that depends only
on eigenvalues (e.g., determinant). It also holds for the Frobenius norm. Thus, we regard E

and Ep as equivalent affine invariant measures of the change from B, ' to B, il'



There is a fascinating historical connection that ties the relative change matrix Ep to BFGS,
DFP and Greenstadt’s (1970) method from which Goldfarb (1970) derived BFGS. As reviewed in
Section 2.1, Ey;, and Eyw, defined in (9) and (10) are well-known duals that measure change on
the inverse and nominal scales and lead to the BFGS and DFP methods respectively. In the same
sense, the dual of Ep, is

_ pl/2 -1 -1 1/2
Er = Bk (Bk+1 - Bk )Bk

which is the matrix that Greenstadt minimized to derive the E; method. Therefore the SQN update
derived from Ep (in the next section) is the dual of Greenstadt’s Er method in the way that BFGS
is the dual of the older DFP method. (One small difference is that Greenstadt did not constrain
By.+1 to be positive definite, as SQN does.)

3 SQN: Least Relative Change

The form of Ep in (11) as a measure of change motivates transforming the coordinates of z by
B;/ % 50 that the problem of updating the Hessian estimate takes a simple form. This section uses
Broyden’s original idea of preserving the portion of By that is orthogonal to d; but applies it in
the transformed coordinate system.

As the focus is on the k-th step of the quasi-newton algorithm, the notation is streamlined

from this point forward by dropping subscripts k and replacing subscripts & + 1 by ‘+°’.

3.1 Canonical coordinates

For conceptual convenience, at the k-th iteration transform z in such a way that the line search is
along the first component direction and the current Hessian estimate B transforms to the identity

matrix. This is accomplished by the linear transformation
i=U'B"%, (12)

where U is an orthonormal rotation matrix with first column equal to B'/2§/(8'B6)'/2. In the

transformed space the current step is strictly along the first component direction:
i, — % = (8'B8)Y%(1,0,...,0)"

and the objective function is

with gradient



and Hessian

G(z) = V2f(z) = U B Y2G(z)B~/?U. (13)
Substituting the estimated Hessian B for G(z) in (13) produces the transformed estimate B = I,,,
the n-dimensional identity matrix.
3.2 Observed and missing information

Define second-order numerical derivatives of f(Z) along the search direction as

[a]: g(2+) - 402 _U'BTVy (14

~(1,0,...,0)(Z4 — %)  (8'Bo)L/2°

where the first element a is a scalar and b is an (n — 1)-dimensional vector. The curvature condition
(3) implies that a > (1 — ¢2)/s > 0. The quasi-Newton condition (1) is equivalent to the intuitive
idea that the above numerical derivatives form the first column of the updated Hessian matrix.
Since the Hessian is symmetric, the general form of Hessian update in transformed coordinates
becomes

a b

B _
Ty c

; (15)

where C' is to be determined subject only to the constraint B+ > 0 which is equivalent to C' —
a~'bb’ > 0. (The notation M > 0 indicates that the matrix M is positive definite.) C represents
curvature in the complimentary space—that is, the space canonically orthogonal to the current
search direction.

Following Broyden’s idea that no information is gained in directions orthogonal to § suggests
the updating scheme obtained by taking C = I,,_; if doing so produces B, >0 — i.e., if a > b'b.
But, what to do if a < b’'b? The question itself implies that certain information on C' is provided
by the observed data (a,b) along with the assumption that the Hessian matrix is positive definite.
In general, C should be a function of ¢ and b.

The following theorem provides the least-change update based on the Frobenius norm of Ep.

Theorem 1 (SQN Update) The quasi-Newton update that minimizes ||Eg||p subject to (1) and

B4 > 0 has canonical form

. a v
By = ) (16)
b I_1 + Asqn bb' /a
where for r = b'b/a,
0, ifr<1
A = 17
SN { 1 -7t otherwise. a7

B+ is singular for r > 1.

11



Proof.

Bl = 505, = [ -4, =[5,
(6 )10 &)-)
b C b C

= tr(®%) — 2tr (®) + 2b'®b/a
where ® = C — bb' /a and we have used B, = U'B~'/?B, B~'/2U from (13). By > 0 is equivalent
to @ > 0 so minimizing ||E||; over By > 0 is equivalent to minimizing the final expression over
® >0.

Denote the eigenvalues ® by 0 <n; < ... <17,. Then
tr (2%) — 2tr (B) + 20/Tb/a > Y 07 —2) i+ 2mb'b/a (18)
i i

with equality if and only if the first eigenvector of ® is proportional to b. The right-hand side
of (18) is minimized by 7o = --- =17, = 1 and

n = max{0,1 —r}.

Thus, the left-hand side of (18) is minimized by a matrix with the specified eigenvalues and first
eigenvector equal to b/v/¥’b. The required matrix is

max {0,1 —r} —17] b0/
r a

d=1I+

and this corresponds to the optimal C given in the theorem. O

Theorem 1 demonstrates that making no change in the complementary space (i.e., C = I,,_1)
does, in fact, produce a least change update. The theorem also provides a larger estimate for C
when needed to preserve nonnegative definiteness. Our implementation of SQN uses a safe-guarded
choice of Agqn to prevent the Hessian estimate from becoming singular. See Equation (7).

Behind the intuition that one should make small alterations to the Hessian estimate in the
complementary space lies a principle that accuracy obtained on previous iterations should be pre-
served as much as possible. The following proposition demonstrates that the SQN update achieves
the goal of preserving Hessian accuracy in a certain sense. Section 7.1 explores this topic further
in the context of a statistical model for C' and shows that the SQN update is, in fact, a Bayesian
estimate of the Hessian under a prior distribution designed to preserve accuracy built into the

previous Hessian estimate.
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Proposition 1 (SQN Accuracy Preservation) If the true Hessian in canonical coordinates is

positive definite and given by

B+:

o ¥ ] , 19)

b  CrtruUE

then Csqn = In—1 +/\SQNbb'/a is at least as accurate as I, 1 for estimating CTruUE in any direction

either parallel to b or orthogonal to b. That 1is,

‘ul (CSQN - CTRUE) U‘ <

u' (In—l - CTRUE) u‘ (20)

for any u such that either u'b =0 or u o< b. Furthermore, this is not necessarily true for any larger

estimate C = Csqn + V'V’ where V is any non-zero matriz with n — 1 rows.

See Appendix A for a proof.
The following proposition provides the canonical form for the well-known Broyden family and

shows that SQN updates are particular members.

Proposition 2 (Canonical Broyden Updates) Under the canonical transform (12) the Broy-
den update (4}) transforms to
- b
Bi-|" (21)
b In_1+Xbb/a
where A =1+ ¢/(8'y). In particular, the usual Broyden parameter is ¢ = (A — 1)a and important

special cases are given as follows:

Method A ¢

SON max{0,1 —r '} max{—a,—ar '}
BFGS 1 0

DFP 14+a™! 1

E; 1—aYa+r)? —(a+7)71

where if r = 0 the maz is taken to be the first argument.

See Appendix B for a proof. The proof also provides formulae for a, b and 7 in terms of the usual
quantities §, v and B.

The Er value for A can fall below the critical point A = 1 — r~! and thus produce an in-
definite update. Minimizing ||Ef||r over nonnegative definite updates has the effect of truncating
Greenstadt’s solution at the critical value.

Although BFGS minimizes several different metrics of change (see Fletcher, 1991), Proposi-

tion 2 indicates that BFGS increases the lower right block over its previous value of I, 1 whereas

13



SQN leaves it unchanged if possible, or adds a fraction of the BFGS correction in order to preserve
nonnegative definiteness. The conclusion of Proposition 1 is that neither BFGS nor DFP preserves
the accuracy of the previous Hessian estimate. It is interesting that both BFGS and DFP explode

as a becomes small.

4 Step Size Estimation

In trial experiments with the SQN update, we carried out the quasi-Newton M-step using a line
search in which the initial step size was unity; that is, the line search used an initial evaluation
point of z — sB~'g with s = 1, which is the Newton step under the assumption that B is the
actual Hessian. The experiments demonstrated that the SQN update tended to reduce the number
of iterations to convergence compared to BFGS but did not consistently reduce the number of
function evaluations required. Further investigation showed the reason: unit steps are often too
long when the SQN update is used. Zhang and Tewarson’s (1988) steepest descent method (SDQN)
also uses negative Broyden parameters and they state, “SD@QN tends to give steps longer than BFGS

»

steps, and therefore is more likely to violate the [sufficient decrease] condition.” When unit steps
are used, fewer iterations seem to come with the price of more function evaluations per iteration.
Some numerical results with unit step sizes are reported in Section 6.

Why do negative Broyden parameters produce steps that are too long? A rough explanation
is that a negative Broyden parameter produces a smaller Hessian estimate than BFGS. Compare
A < 1 in Proposition 2 with A = 1. A smaller B implies a longer unit step —B~'g. Therefore,
if unit steps are suitable for BFGS, then unit steps may well be too long for use with negative
Broyden parameters. This reasoning is admittedly rough; it does not account for differences in
the step direction and it does not provide guidance for selecting more appropriate step sizes. This
section proposes a Wishart model to describe uncertainty of the unknown Hessian and then derives

an estimate of the optimal step size as a function of the Broyden parameter used in updating the

Hessian. The SQN initial step size (8) is a special case.

4.1 A Wishart model for the Hessian matrix

The unknown Hessian G, = G(#,) can be modeled as a random matrix whose probability distri-
bution quantifies the plausibility of all possible canonical Hessians. The distribution of é+ should
naturally be centered at the previous estimate B = I,,. Although G’+ likely has greater accuracy
in the directions of recent steps, it is reasonable to model é+ with equal uncertainty in every di-
rection because the previous step directions are not available in the quasi-Newton framework. The

most basic statistical model for a symmetric positive-definite matrix with expected value I, is the

14



Wishart model:
vG, ~ Wishart, (I,,,v), (22)

where v > n + 1 is the degrees of freedom parameter. The distribution of G becomes more
concentrated around I, as v increases. See, e.g., Anderson (1984, p. 244-257) for the definition

and properties of the Wishart family. The probability density function of é+ is proportional to

onenp exp {—gtr (é+) } . (23)

Because (23) only involves G4 through its determinant and trace, any orthogonal rotation, R'G | R

[k

where R'R = I, is distributed identically to é+. This directional symmetry seems an appropriate
requirement for modeling the Hessian in canonical coordinates.

In the quasi-Newton framework, the first row and column of é+ are considered to be known
from the numerical second derivatives (14). Therefore

é+=[‘b‘ bC] (24)

where a and b are observed and C is not. Standard Wishart theory provides the conditional

distribution [C|a, b] through

b
v [C - — a,b] ~ Wishart,, 1 (In_1,v —1).
a
The conditional expectation and mode are
v—1 b’
= L+ 2
E(Cla,b) > I, + . (25)
v b’
M = — I, 1+ —. 26
ode(C|a, b) o1+ — (26)

The two multipliers on 1,1 depend on the degrees of freedom, v, and they differ because the
Wishart model is skewed toward large positive definite matrices. But both coefficients approach
unity as v — 0o, which is called the large-sample limit.

Comparing (25) and (26) to (21) in Proposition 2 shows that the the large-sample conditional
expectation and mode under a Wishart model are exactly equal to the BFGS update. Specifi-
cally, let B ()) denote the Broyden update (4)—(6) with parameter A and let B, ()\) denote the

corresponding canonical form given by (21). Then

lim E (G |a,b) = BY?U [lim E (é+‘a, b)] U'BY/?
V—00 V— 00

= BY?UB,(1)U'B'/?

= B.(1) (27)
which is the BFGS update. Section 7.1 discusses why (27), the simplest statistical estimate, is not
used in the Statistical quasi-Newton method and then derives the SQN update from a generalized

version of the Wishart model.
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4.2 Optimal step size

An estimate of the optimal step size for any given Broyden update can be derived from the Wishart
model. Let d; represent an arbitrary search direction to be taken in the M-step on iteration k + 1.

A second order Taylor expansion of f(-) about the point z gives the quadratic approximation

2
S
flzy +sdy) = f(zy) +sdygy + Ed'jLG+d+ (28)
with optimum step size
—d\ g+
R AL 29
S T d.Gd, (29)

obtained by differentiating (28) with respect to s and setting the result to zero. The denominator
of (29) involves the unknown Hessian but an estimate of s* can be obtained by replacing G with

its large-sample conditional expectation from (27):

lim E (G4la,b) = By (1) = By(\) + (1 — \)(§'y)ww' (30)

vr00
where (4) has been used with to express B, (1) in terms of a general Broyden update. The resulting
optimum step size is obtained by plugging (30) into (29) and taking d; = —B;l(/\)g+, the next
quasi-Newton step direction:

9+ BY 1()\)9+

§(>\) = -1 ! ! -1 2°
94y By (Mg + (1= A)(0")(¢} By (Mw)
This is the step size formula (8) of the SQN algorithm. The estimated optimum for BFGS is

(31)

5(1) = 1 which suggests that unit steps may work better for BFGS than for any other Broyden
update.

Results comparing BFGS to the SQN algorithm using (31) are shown in Figure 2 and demon-
strate that SQN achieves consistent reduction in function evaluations, as well as iteration counts
and gradient evaluations compared to BFGS. Additional comparisons to SQN using unit steps are
shown for three new test functions in Section 6.

The inequality in (8) indicates that the estimated optimum step size is at most 1 for the SQN
choice of A. This is true for any A < 1. Similarly, §(A) > 1 for any A > 1. The following proposition,
proved in Appendix C, gives tight bounds on §()).

Proposition 3 For the step estimate §(\) given by (31),
Ae(l—-r"11] = 3V e[l-010-Nn1]
A>1 = $(A) €[1,1 = (1 —A)r]
Furthermore, §(\) = 1 — (1 — N)r if and only if g+ = U'B™?g(z,) « (0,b')".

The proposition implies that § can get arbitrarily close to zero only if (1 — A)r is close to 1 —
that is, only if X is close to its critical value, A = 1 — r—!. Even in this case, the actual value of §

depends on how closely the new gradient g', is aligned with (0, ).
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Table 1: More, Garbow and Hillstrom unconstrained test functions

index function m n tested
1 Helical valley 3 3
2 Biggs Exponential 13 6
3 Gaussian 15 3
4  Powell badly scaled 2 2
5 Box 10 3
6 Variably dimensioned n+2 4, 8, 16, 32, 64, 128
7 Watson 31 6,9, 12
8 Penalty I n+1 4,10
9 Penalty II 2n 4,10
10 Brown badly scaled 3 2
11  Brown and Dennis 20 4
12 Gulf Research 100 3
13 Trigonometric n 4, 8, 16, 32, 64, 128
14 Rosenbrock n 4, 8, 16, 32, 64, 128
15 Powell singular n 4, 8, 16, 32, 64, 128
16 Beale 3 2
17 Wood 6 4
18 Chebyquad n 4,6, 8

5 Performance Evaluation

Figures 1 and 2 demonstrate that SQN performs better than BFGS. This section describes the
details of the optimization setup and the problems tested. The numerical study closely follows that
of Zhang and Tewarson (1988) but not in every detail. Section 6 uses three new test functions to

delineate more precisely the cases in which SQN is expected to outperform other Broyden updates.

5.1 Moré test problems and convergence criterion

Table 1 lists the eighteen functions of Moré, Garbow and Hillstrom (1981) for testing unconstrained

optimization algorithms. Each function is a nonlinear sum of squares of the form

where z € R™. The final two columns in Table 1 give the values of m and n used in the numerical

comparisons. The choices for n follow Zhang and Tewarson. However, these authors did not report
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their choices for m so in cases with variable m we used either values for which Moré et. al provide
the minimum function value (functions 2, 11 and 18) or arbitrary values (functions 5 and 12).

Moré et. al provide standard starting points zg € R™ for each problem and suggest setting
zo = xg X (start factor) for various start factors. Nominally we used start factors of 1(1)10, but
in some cases results are provided on only a subset of these values. On problem 7, zg = 0 so the
start factor is irrelevant. On problem 12 the point 10zg is the minimum so only 1(1)9 are used.
The only other exceptions are some start factors on functions 2, 13 and 16 for which BFGS and
SQN converged to different solutions so these start factors are omitted as reported in Section 5.3.

The Moré test problems have diverse features that challenge optimization algorithms, such as
multiple local minima (e.g., function 12) or very flat regions near the solutions (e.g., function 4).
When comparing algorithms it is desirable that they converge not only to the same function value
but also to the same point. For this reason we use the following two stage procedure to assess
convergence. For each test problem and starting point after running both SQN and BFGS until
either no further progress can be made or to a maximum of 2000 iterations, the best point z,
achieved by either algorithm is identified. The resulting iteration traces are then truncated at the
first k for which

[f (zx) = F(@)] + (2 — 2)'g(z)| + [(@r — 2.)'G(@e) (w5 — 2.)| <0+ [f(z)]]. (32)

The three terms on the left-hand side are the positive parts of a quadratic Taylor expansion around
z4. If (32) is not achieved by one of the algorithms, then the given starting point is omitted
from our comparisons. This typically occurs when different algorithms converge to different local
minima so the third term on the left, and possibly the first term, remain large. Criterion (32) is a
generalization of Gill and Murray’s (1979) assessment criterion; it requires the gradient to be small
and both the minimum and minimizer to agree with those of the best algorithm. The absolute
value is used in the third term because in rare cases the true Hessian G(z,) can be singular but

numerically indefinite.

5.2 Line search and quasi-Newton details

We use Fletcher’s (1987, pp. 33-38) line search algorithm with the tunable parameters set to the
values that he suggests (f,71,72,73) = (0,9,0.1,0.5) and with tolerances of (ci,cy) = (107%,0.9)
in the Wolf conditions (2) and (3). The initial step size is given by (8) unless stated otherwise.
The only modification made to Fletcher’s algorithm is that steps xy1 — xx are restricted to have
a maximum Euclidean length of 10%, a precaution that Zhang and Tewarson (1988) found useful
but is rarely imposed.

On rare occasions the line search along —Bk_1 gi fails to achieve a point that satisfies the Wolfe
conditions because of finite numerical precision. In this case an additional line search is attempted

in the steepest descent direction with initial step —gxtr (Bk_l) /n. Over all the cases in the study
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only seven steepest descent steps were used prior to (32) being satisfied, and these occurred only
for BFGS on Chebyquad with n = 8.

For programming convenience and computational efficiency, Broyden updates of the inverse
Hessian were implemented using the well-known dual form of equation (4). See, for example,
Nocedal and Wright (1999) for details. The initial estimate is By ' = I,. A rare phenomenon due
to finite precision is that the update can produce an inverse Hessian that is numerically indefinite

and the new search direction can be non-decreasing. When this occurs we take
B L « Bl t+e¢ ’
k+1 k+1 9k+19k+1
where € is chosen so that the new inverse Hessian satisfies

9;c+1Bk_i19k+1 = 107Gk 19k+1

to produce a new search direction that is slightly decreasing. Such modifications were required 11
times for BFGS on Chebyquad with n = 8 and a total of 26 times for SQN on Chebyquad with
n =6 and 8.

5.3 Results on Moré problems

Figure 1 plots SQN iteration counts relative to BFGS for test problems of small dimension. Table 2
gives further details on these runs. The start factors, listed in the third column, are those for
which both SQN and BFGS converged to the same point as determined by (32). In most cases this
is 1(1)10. The columns of BFGS counts give the averages (over start factors) of the numbers of
iterations, function evaluations (f) and gradient evaluations (g) until convergence. The final three
columns report the ratios of average counts for SQN divided by those for BFGS.

Table 3 compares SQN to BFGS using four of the Moré problems in which the dimension is
taken to increase by powers of 2 from 4 to 128, as in Zhang and Tewarson (1988, Table 4). SQN
generally performs better than BFGS but the efficiency on these four problems is not as good as
on some of the problems with small dimension.

Although Table 3 does not show a strong dependency of SQN efficiency on problem size, the
plot in Figure 2 of all data from Tables 2 and 3 demonstrates that the relative efficiency of SQN
improves as problems get more difficult. Substantial variation occurs over different problems but the
trend is clear and applies not only to iteration counts but also to function and gradient evaluations.

Table 4 shows that SQN compares favorably with results of other published studies that use
negative Broyden parameters. Only rough comparisons are valid in the table because of some
differences in the test functions used and in the manner of reporting results. The table lists overall
average efficiencies of SQN alongside comparable quantities reported by other authors on the Moré

problems. The most equivalent comparisons are to the SDQN and LCCB methods of Zhang and
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Table 2: SQN performance relative to BFGS on problems of small dimension. BFGS counts are
averages over the start factors. SQN/BFGS columns contain ratios of count averages to indicate
SQN efficiency.

BFGS counts SQN / BFGS
index n start factors iter. f g iter. f g

1 3 1(1)10 26.6  39.7 29.0 1.02 1.00 1.01
2 6 1,2,3,4,6,7,9 34.6 424 38.4 0.86 0.90 0.88
3 3 1(1H1o 13.9 193 15.2 0.85 1.10 1.03
4 2 1(1)10 111.7 164.0  125.1 0.90 094 091
5 3 1(1)10 22.1  37.0 314 0.71 0.90 0.88
7 6 1 31.0 39.0 32.0 0.90 0.92 0.91
7 9 1 66.0 77.0 67.0 0.56 0.70 0.66
7T 12 1 127.0 140.0 128.0 0.44 0.66 0.63
8 4 1(1)10 114.0 162.6  126.2 0.84 0.87 0.88
8 10 1(1)10 172.2 236.1  186.8 0.85 0.91 0.90
9 4 1(1)10 434.9 596.3 4764 0.91 0.98 0.93
9 10 1(1)10 404.3 566.2  436.0 0.77 0.83 0.81
10 2 1(1)10 14.1 25.1 18.1 096 1.02 1.02
11 4 1(1)10 35.5 549 36.7 0.85 0.90 0.86
12 3 1(1)9 29.0 39.8 32.6 0.80 0.92 0.88
16 2 1,2,3,5,7,10 20.8 31.7 24.7 0.76 0.88 0.85
17 4 1(1)10 75.5 105.3 80.5 0.93 1.00 0.97
18 4 1(1)10 69.5 98.8 75.5 0.75 0.88 0.85
18 6 1(1)10 173.0 227.0 183.3 0.61 0.78 0.73
18 8 1(1)10 264.5 340.5  278.1 0.58 0.83 0.75

Average of 20: 0.79 0.90 0.87
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Table 3: SQN performance relative to BFGS on four problems as dimension increases. The layout

is the same as in Table 2

BFGS counts SQN / BFGS
index mn  start factors iter. f g iter. f g
6 4 1(1)10 9.7 15.0 11.4 0.98 0.99 0.98
6 1(1)10 14.0 21.6 15.8 0.96 0.97 0.96
6 16 1(1)10 20.8 278 22.1 0.97 0.97 0.97
6 32 1(1)10 234 31.0 25.3 1.02 1.01 1.02
6 64 1(1)10 28.0 353 29.7 0.98 0.99 0.99
6 128 1(1)10 343  41.0 35.6 1.00 1.00 1.00
13 4 1(1)6 18.0 245 19.2 0.93 0.94 0.92
13 8 1,3,4,6,8,9,10 346  46.4 36.7 0.92 0.97 0.93
13 16 1,2,3,4,6,7,8 44.3  54.0 46.1 0.88 0.91 0.89
13 32 1,2,34,789 43.7 514 45.6 091 0.91 0.90
13 64 1,2,3,78 41.0 494 43.0 0.97 0.98 0.97
13 128 1,2,3,7 322 36.8 33.8 094 0.95 0.93
14 4 1(1)10 72.1 103.7 78.5 0.90 0.96 0.95
14 8 1(1)10 123.8 1729  130.6 0.87 0.95 0.93
14 16 1(1)10 151.7 220.9  158.2 0.90 0.98 0.95
14 32 1(1)10 171.2  279.0  176.7 0.80 0.89 0.83
14 64 1(1)10 272.7 481.1  281.1 0.79 0.88 0.82
14 128 1(1)10 358.5 6781  365.8 0.86 0.93 0.88
15 4 1(1)10 37.5  49.6 39.4 0.92 0.94 0.93
15 8 1(1)10 65.8  85.0 67.7 0.88 0.96 0.94
15 16 1(1)10 111.0 144.7 114.0 0.87 0.95 0.91
15 32 1(1)10 173.4 230.3  175.2 0.95 0.99 0.97
15 64 1(1)10 305.2 4084  308.5 091 0.95 0.91
15 128 1(1)10 588.4 763.4  590.9 0.86 0.91 0.87

Average of 24: 0.92 0.95 0.93
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Tewarson (1988) because our study was patterned after theirs. However, they do not report function

and gradient evaluations separately but roll them into
EFE = (function count) + n x (gradient count).

When we tested the SQN update using unit steps, its EFE efficiency was consistently better than
BFGS but the function evaluation efficiency was not. Method I is that of Byrd, Liu, and Nocedal
(1992, Table 5) which they offer as setting a performance standard for replacing BFGS with a
competitor. However, Method I is not practical as a quasi-Newton update because it requires
evaluation of the true Hessian matrix. A big difference in Byrd, et. al’s test setup is that they used
only single starting points, so their results could be more affected by atypical performance on a
single problem. Also their numbering of functions does not match the original Moré numbering, so

the set of functions tested is not completely known.

Table 4: Published eficiencies of various negative Broyden updates relative to BFGS!.

Small Dimension Increasing Dimension

Count SQN SDQN LCCB Method I SQN SDQN LCCB
iteration 0.79 0.79 0.93 0.82 0.92 0.87 0.94
function eval. 0.90 — — 0.88 0.95 — —
gradient eval. 0.87 — — 0.93 — —
EFE 0.87 0.85 0.94 — 0.93 0.89 0.95

1. Only rough comparisons are valid because of differences in the function sets, starting points, con-

vergence criteria and other implementation details.

6 Three New Test Functions

The Moré test problems have become standard for comparing quasi-Newton algorithms but they
are not particularly useful for empirically validating our claim that BFGS tends to inflate By and
that SQN is more neutral. This section uses three new test functions for that purpose.

Byrd, Liu and Nocedal (1992) found that BFGS is lopsided: it can more readily increase Hessian
estimates that are too small than shrink ones that are too large. This was surprising in light of the
strong “self-correcting” property of the BFGS update that was established by Byrd, Nocedal and
Yuan (1987): the relative error between the curvature predicted by By and the curvature observed
in the current line search is transmitted exactly to the relative change of the determinant from |By|
to |Bk+1|- Proposition 2, on the other hand, shows that BFGS corrections actually inflate By in
the space canonically orthogonal to the search direction whereas SQN corrections leave that part

of the Hessian unchanged (subject to positive definiteness), and therefore, should cope equally well
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with estimates that need to shrink as ones that need to grow. Furthermore, choosing \; to be less
than 0 or greater than 1 should make these effects more pronounced.

To test this understanding, we employ three new test functions, fd¢¢, fi°¢ and fi* with re-
spective Hessians that decrease, increase and change sinusoidally as xj moves toward the optimum

value. We also implement a range of Broyden updates with
Ap = max {>\NOM, 1—(1- 6)’!‘_1}

where € = 1076 and Anom = 0 is SQN, Anom = 1 is BFGS and more extreme values of Axowm
should produce more extreme effects.

General forms of the new test functions are defined in Appendix D but this section uses
specific versions with parameters n = 4, U = I, (n1,m2,73,71) = (1,2,4,8) and, for 5", p = 1.
Each function is convex with a minimum value of 0 at (0,0,0,0). The Hessians are diagonal and

the i-th diagonal elements, for (i = 1,2,3,4), are

Gic(z) = 14 (mizy)’
Gi(x) = [1+ (mizi)?] -
GiMz) = 1+ sin(nz).

At the optimum each Hessian is the identity. The values of 7; scale how quickly curvature changes

in each of the coordinate directions.

6.1 Results for different Anoum

The rationale for testing with functions whose Hessians change monotonically (f4°¢, fi"°) or unpre-
dictably (f*") is to verify our claim that BFGS needlessly inflates the previous Hessian estimate
whereas SQN treats it neutrally. With f¢, for example, the most appropriate Hessian estimate
in iteration k + 1 will tend to be larger than in iteration k. BFGS could have an advantage over
SQN because it tends to inflate the Hessian beyond its previous value in the complementary space.
In this case, the best choice of Anon should be larger than 0 and possibly even larger than 1, the
BFGS value. For f9¢ on the other hand, SQN should have the advantage over BFGS and the
optimal Axowm should be negative. For f5i, there is no consistent pattern for the Hessian on one
step to be either larger or smaller than on the previous step so Axom = 0 (i.e., SQN) should be
nearly optimal.

Figure 3 plots average counts to convergence as a function of Axonm with each panel representing
one of the new test functions. Each plotted symbol represents an average count over 1000 random
starting points. The vertical scales are set to support relative comparisons, the most obvious of
which is that Anxowm has the greatest effect for 9 and the least for f*". Iterations, function
evaluations and gradient evaluations are shown using different plotting symbols. Initial step sizes

are given by (8). The true value is used for the starting Hessian estimate, By = G(x).
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Figure 3: Performance counts verses Axom on test functions with Hessians that are decreasing, in-
creasing and sinusoidal as z; moves toward the minimum. Different symbols are used for iterations,
function evaluations and gradient evaluations. Initial steps are estimated using Equation (8). The
special value Anyoy = 0 is SQN and Ayom = 1 is BFGS.

The starting points 2y were chosen at random in such a way that they tend to be oriented in

the direction of (71, 72,n3,m4). Specifically, the ith component of 2y was drawn randomly as
zo,; = Kni(1 + 2;/3)

where the z; are independent N(0, 1) random variables and the scale was set as K = 200 for fd¢,
K = 50 for fin¢, and K = 1000||n|| for f5*. These choices reflect a little experimentation aimed
at producing differences between BFGS and SQN that are large enough to be interesting without
requiring unwieldy numbers of iterations. As far as we know, other choices for n and the starting
vectors produce similar results, though we have not studied this extensively. Convergence was
declared when f(z;) < 1071%. The more elaborate assessment criterion (32) was not needed in this
study because the three functions are well-behaved.

For fd*¢ Figure 3 demonstrates that SQN is indeed better able to cope with a decreasing

Hessian than BFGS and further improvement is obtained by using slightly negative values of Axowm.
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The situation is reversed for f*°. BFGS handles the increasing Hessian better than SQN and
further improvement is obtained by taking Anxowm as large as 2. Finally, for f5* the Hessian changes
arbitrarily and the SQN update (Axom = 0) is nearly optimal.

Several additional comments on these results are worth noting. First, in each panel all three
curves have nearly the same shape. But function evaluations are always equal to gradient eval-
uations on f9¢° whereas they are substantially higher on f*¢ and fSi". This indicates that the
step size estimate is better for f9°¢ than for the other two functions. Second, for any Anowm < 1
some values of Ay will likely exceed Anom because of the requirement that Bjy,; remain positive
definite. This produces an asymmetry in the results, so that the performance differences between
AnoMm = —1 and 0 are not as great as the differences between 0 and 1. In fact, our selection of
starting points that are biased in the direction of 7 was made to enhance the effect of Axonm below
1 on finand fit. The patterns in Figure 3 are smooth because they average across 1000 starting
points. If counts from a single starting point were plotted, the patterns for fi*° and f5* would be
virtually impossible to discern because of noise in the data. In this case it would be meaningless

to make comparisons on only a few test cases.

6.2 Results for different step sizes

Figure 4 demonstrates the importance of using estimated step sizes, especially with Axom < 1.
The experiment is the same as in Figure 3 except that the algorithm was also run with unit initial
step sizes. The plots compare average function evaluation counts for unit steps against those for
estimated steps. In each panel as Aoy decreases from 1 (BFGS) the unit step results become
much worse than the results with estimated steps. The same appears to be true as Axom becomes
positive and large. The curves intersect at Axom = 1 because the estimated step size is 1.

At Axom = 0 (SQN) the results of Figure 4 are most revealing on f"°. In this case the SQN
Hessian estimate tends to be too small so that unit step sizes are too large. Estimated step sizes
are smaller and perform much better although they may still be too large as indicated in Figure 3
by the gap between the number of function and gradient evaluations. The only case where unit
steps perform substantially better than estimated ones is on f° with 1 < Axoum < 3. These values
of Anowm inflate the Hessian estimates more than BFGS. We suspect that the inflated Hessians are
producing estimated steps that are too short. Significantly, estimated steps are uniformly better

than unit steps on f5i%, for which Hessian changes are fairly unpredictable.

7 Discussion

This paper has investigated two estimation problems that arise in the design of quasi-Newton
algorithms: (1) estimation of Newton directions by way of sequential updates to a Hessian estimate;

and (2) estimation of the optimum along a given search direction. SQN solves the two problems
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Figure 4: Function evaluation counts verses Anom for three test functions. The plots compare
performance with unit initial steps against estimated initial steps using Equation (8) The dots in

this figure are the same as in Figure 3.

rather differently, using a least-change principle for the Hessian update and a statistical model for
the step size. This raises the question of why the statistical model is not also used for the Hessian
update.

In fact, the Wishart model leads to BFGS. This is seen in Equation (27) showing that the
BFGS update is the large-sample conditional expectation of the Hessian given the most recently
obtained curvature information. Another derivation of BFGS is obtained by taking the negative
logarithm of the Wishart density (23), dividing by v/2 and taking the large-sample limit, v — oo.

The result is the following metric:
$(By) = tr (By) —|By]

Fletcher (1991) demonstrated that BFGS minimizes 1)(B.). Thus, the BFGS update is both the

conditional mean and mode estimate under a large-sample Wishart model.
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7.1 Least change and statistical estimation

The reason for using a least-change principle rather than conditional expectation to derive the SQN
update is that Hessian estimation proceeds sequentially. While, statistical theory says that the
conditional expectation (BFGS) is the optimal estimator within a given iteration under a squared-
error loss function, this theory is not directly applicable to sequential estimation of Hessians. A
conservative strategy for estimating the Hessian is to preserve the accuracy obtained in previous
iterations while incorporating new curvature information obtained in the current iteration—that
is, to use a least change principle. Preserving information from previous iterations enables future
estimates of the Hessian to be more accurate.

Estimating the optimal step size is a fundamentally different problem because the appropriate
step size changes on each iteration and there is little reason to expect that an appropriate size in
one iteration will be relevant to the next. Thus, it makes sense to estimate the optimal step size
by using a conditional expectation as we did in deriving (31).

It is possible, however, to obtain the SQN update through a statistical model (as opposed to
the least-change approach in Section 4. The statistical derivation begins with the following.

Statistical Least Change Principle:

For the purpose of updating a Hessian estimate, the uncertainty model for the Hes-
sian in canonical form (15) should be augmented with a prior distribution that strongly

concentrates C near I, 1 without modifying the distribution of (a,b)

The prior distribution called for by this principle does not have the usual Bayesian meaning of a
model for ones prior belief about C; rather, it penalizes departures of C from I, 1 as a mechanism
to force the new Hessian estimate to be close to the old one.

Appendix E derives the SQN update by generalizing the Wishart model (22) in accord with the
above Statistical Least Change Principle. This framework is then used to derive the SQN Hessian
estimate from the conditional distribution [C|a,b]. Although this derivation of SQN uses different
mathematics from the Frobenius norm derivation in Section 3, the fundamental reasoning is the
same as enumerated in Section 2.2—namely, it is important to preserve accuracy that has been
built into the Hessian estimate on previous iterations by minimizing the relative change from B to
B, as measured by Ep.

The SQN formulation of the least-change problem is closely related to Broyden’s (1965) desire
to make no-change in directions orthogonal to the search direction §. SQN applies Broyden’s idea to
the directions that are orthogonal in a canonical sense—that is, directions g such that ¢’B~1§ = 0.

Viewing Broyden updates under the canonical transformation sheds light on why both BFGS
and DFP tend to inflate the Hessian estimate: they add a multiple of bb’/a in the complementary
space as shown in Proposition 2. This interpretation is born out in the empirical results on new

test problems reported in Section 6.
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7.2 Possible extensions

Use of a statistical framework to design a quasi-Newton method motivates several interesting topics.
The numerical results on three new test functions suggest that information on the bias of previous
Hessian estimates could be captured and used to obtain a better update that uses either varying
values of Axom within the Broyden family or a self-scaling update outside of the Broyden family.
Use of the Wishart model to estimate the optimal step size also suggests a more general class of
quasi-Newton methods obtained by searching, not in the estimated Newton direction —B~'g but
rather in an alternative direction determined from the conditional distribution [-B~!g|a,b]. We

have obtained promising results in some limited tests of these ideas.
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Appendix: Proofs of Theoretical Results

A. Proof of Proposition 1

If r < 1 then Csqn = In—1 and (20) holds as an equality for all u. Suppose r > 1 so that
Csqn = In—1 + (1 —r~1)a"1bb'. Then for any u : u'b = 0,

u'CSQNu =u'l, 1u

and thus (20) holds as an equality. Suppose u = pb for some p # 0. Positive definiteness of the
true Hessian implies (Ctryg — @ 'bb’) > 0 and thus

w'Ctrugu > a tu'bbu = p?(V'b)r
= u/Csqnu > p%(b'b) = u'I, 1u > 0.

That is, in the direction of u, Csqn is closer to Ctryg than I,_; is, and this implies that (20)
holds as a strict inequality.

To prove the final statement, suppose that Crrug = I,—1 so the right-hand side of (20) equals
zero and consider two cases as follows. First suppose that |[V'b|| > 0 and take u = pb with p # 0.
Then

W' (C — Crrug)u = p?b (Aa™'0) + VV')b >0

and (20) is violated. On the other hand, if ||V'b|| = 0 then assume, without loss of generality, that V
has full column rank and take v = V (V'V)~!y for some vector y # 0. Then u'b = ¢/'(V'V)"'V'b =0
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but
W(C = Crup)u = (VV)TV/(VV )V (V'V) Ty = oy > 0

which violates (20).

B. Proof of Proposition 2
Proof. Using (13), the relation between B, and B, is given by B, = B'/2UB,U'B'/?. This can
be expressed as follows:

a b

b I+ Abb/a

B+ — Bl/2U UIBl/2

a—1 o
b AbY /a
— B+ BY2U(Dy + Dy + D3)U'BY?, (33)

= B+B'U U'B'/?

where

0 b b /a —1)bb fa2 |

-1 0 a?/a b 0 0
, Do = and Ds =

0 0 a(A

Denote by U[,1] the first column of U. Then,

Bl/2§ a
(6[_36)1/2, b

B UIB71/2,Y

Ul,1] = = Wa

W bb _y'BTly &y
~ Bs’ a &y 0B

Simple algebraic operations lead to the following equalities

and r=

_B&S’B

1/2 1pl/2 _ _pl/2 'gl/z —
B“UDUB BY*U[,1](U[,1])'B S BS

a [a bI]UIBl/Q _ ,),,-),/

= 5y
a a a a
b 0 b 0
Bé 07 Bs \'
— A=D1y L= A
A1) (5'7 5/35) (5'7 5'35)
From these equalities and (33), we see that the expression for B, is identical to (4) with ¢ =

(A =1)(0"y).

Bl/ZUD2UIBl/2 — lBl/ZU
[4)

and

!
B2UDU'BY/2 = a()\gl)BUQU( > U'B'/?

a
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C. Proof of Proposition 3
Substituting By (1) for G4 in (29) and using d; = —B;l()\)g+ gives

_—dygy  diBy(Ndy
4, B,()d; &, B (D)d,

5(0)
The denominator can be written as
d\ By (1)dy = dyB'PUB(1)U'Bd, =/ [I, + (1 - \R]y

with

i . 0 0 \ .
y=BY*(\U'BY%d, and R=B () ( 0 W/ ) BP0,

Thus,

S0 = [1 . A)y;fzy] -

R has a single (potentially) non-zero eigenvalue

_ T
R gy gy

wocB_li_/Q()\) ( _br )

as is seen by noting that the following are equivalent:

with corresponding eigenvector

Rw = nw
B (WRw = nBY*(\w

0 0 —r _ a v —r
0 bb/a b ) "\ b L+ a/a b )

Simple algebra establishes the final equality. Note that n > 0 for A > 1 — 1.
The eigen-decomposition of R implies that 0 < y'Ry/(y'y) < n and this is equivalent to the
bounds on §()) stated in the proposition. The extreme case §(A) = 1 — (1 — A\)r occurs if and only

if y o« w which is equivalent to

BY’Ww o« —BY*(\)y
= —B,(\U'BY?d,
= BL(WU'B'?B{'(Ngy
= U'B Y?B.(\)B Y2UU'B?B,'(\)g,
= U'B %, =g,
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Thus,

maB”@)zéum(j)«<2>.

D. Three test functions

Three convex functions are constructed. The first, denoted f4°°(z), has a Hessian matrix that
becomes smaller as = moves in the direction of the optimal point z,. The second function, f"°(z),
has a Hessian matrix that becomes larger as  moves in the direction of the optimal point z,. The
third function, f"(x), has a Hessian matrix that behaves in a sinusoidal fashion as z moves to the

optimal point z,.

D.1 Decreasing-Hessian function

Define a quartic function as follows:
faec(z) = a:a:—l——an (ulz)* (z € R"™),

where n; > 0 are known scalars and uyq, ..., u, are the n columns of a fixed n-dimensional unitary
matrix U = (uy, ..., u,) so that U'U = I,,. The gradient of f4°¢(z) is

dec )=z + = anux Uj,

for which the equation g4°°(z) = 0 has the unique solution z, = 0. The Hessian matrix of f9(z)
at z is

n

Goec(a) = ) [1 4} ()] i,

=1
which satisfies both G9¢(z) > 0 and G9°(z) — G9°¢(z,) > 0. So the quartic function f9¢(z) is
convex and its Hessian decreases as x moves to z,.
D.2 Increasing-Hessian function

The following function is constructed so that its Hessian matrix at any z is the inverse of G9°°(z).
Thus, the constructed function is also convex but its Hessian matrix increases as x moves to z..

The function is defined as

flnC Zf’ (.’L‘ € Rn),
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where

(uz)?

N[

fi(z) =

m|’_‘

7’.

S

for i = 1,...,n. The gradient of fi"°(x) is

g (a) = { L

1 !
iz1 7 arctan(nuiz)u;

The Hessian matrix of fi"°(z) is

n

Ginc(x) — Z o

n; (u;)

i=1

[(niwjz)arctan(niujz) — 5 In (1 + (niujz)?)]

if g, =0,
ifng; >0

if p; =0,
if g; > 0.

1 :

Note that all the three functions fi"°(z), ¢'"°(z), and G'™°(z) are continuous with respect to 7; at

the value n; =0

D.3 Sinusoidal Hessian function

Consider the function

Fin() = 30 |30 + 5 (e — snrai)

i=1

(z € R"),

where p € (—1,1) and n; > 0 are given scalars, and u1, ..., u, are the n columns of an n-dimensional

unitary matrix U = (uy, ..., up). The gradient is

. "\ p[1 — cos(niulx)]
gsm(m) =T+ Z o Us,

i=1
and the Hessian is

n

i

Gn(z) = 3 [1+ psin(miufz)] iuf.

=1

G®"has a sinusoidal behavior as £ moves toward z,.

E. Derivation of SQN from a Wishart Prior

The Wishart model (22) provides a joint distribution for the blocks [a, b, C].
described hierarchically in terms of the distributions [a|b, C], [6|C] and [C].

theory provides the following;:

v[(@—bC7')|b,C] ~
[u1/20*1/2b‘0] ~
vC ~
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The model can be
Standard Wishart

X12/—n+17 (34)
Normal,, 1 (0, I,—1), (35)
Wishart, 1 (I,—1,v) . (36)



To implement the Statistical Least Change Principle, we replace (36) with
(vo + v)C ~ Wishart,_1 (In—1,19 +v) (37)

where 1y > 0 denotes the prior degrees of freedom. Taking vy to be arbitrarily large drives [C] to
be arbitrarily concentrated around I,_;. The posterior distribution [C|a, b] will also be arbitrarily
close to I,,_; if this does not contradict that C~¥+ is positive definite. But for the case where I,,_1 is
not a valid estimate of C, the generalized Wishart model (34), (35), and (37) provides the necessary
framework to derive a posterior estimate of C that is as close to I,,_1 as possible while maintaining
a positive definite update formula. An important feature of (37) is that it retains directional
symmetry in the space of C' with the consequence that Hessian uncertainty is modeled as equal in
every direction (canonically) orthogonal to the current step direction.

Although the model with vy > 0 is not standard the following proposition derives two estimates,
C’i, from the posterior distribution of C —a~'bb. In the limit as vy — oo both estimates converge
to the SQN update.

Proposition 4 If the joint distribution [a,b,C] is given by (34), (35) and (37) and if b # 0,
then the modes of [C — a bt|a,b] and of [(C’ — a*lbb')f1 |a,b] are unique and the corresponding

estimates of C are

Cy= <1¥ n+1>-7n—1+(u7i) b—b,,

vy + v a
where
1 n+1 n+1)\2 4ryg
=—-|r—-1% 1 - 38
RS 7 T V0+V+\/( +T:FV0+Z/> .y (38)

and r = b'b/a. Furthermore,

) A b
lim Cy =1,_1+ /\SQN

vo— 00 a

where Asqn s given by (17).

Proof. From (34) and (35), the conditional density of [C|a, b] is proportional to

v—n—1

3 ven
o) (C > 0).

/
O % ‘C— w
a

v—n—1
2

(a—b'C™'b)

Multiplying this by the density for C corresponding to (37) produces the posterior density of [C|a, b],

which, written in terms of ® = C — a~'b¥/, is proportional to

12
' 0

<1>+% Texp{—”";”tr(cb)} (® > 0). (39)

v—m—1

@ 2
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To determine the mode of (39) let u1 < --- < p,—1 denote the eigenvalues of ®, which are necessarily

positive. Then

’
‘q>+@
a

— 18|14+ a W b) < |0 (1 T ;T) () [
1 "

and therefore (39) is bounded above by

v—n—1 v, vo+v — ”0+” n—-1 _votv
[ul T ()T m] H( o M) (40

Furthermore, the bound is achieved if and only if the first eigenvector (corresponding to p1) is
proportional to b. Taking the log of (40) and setting derivatives to zero provides the maximizers
p1 = p+ (defined in 38) and p; = (vo+v —n—1)/(vg +v) for i = 2,...,n — 1. The unique matrix
that has this set of eigenvalues, {u;}, and a first eigenvector proportional to bis &, = Cy —a~'bV'.
Therefore ®, uniquely maximizes (39) and C. is the corresponding estimate of C.

Since the Jacobian of the transformation ® — & ' is J(® — & 1) = |®|"*! the posterior
density of (C —a~'bb')~! = ®~! is proportional to

by | %
ot exp{—y(];ytr(@)} (@ > 0). (41)

v+n+1
2

@]

and C_ can be derived using the same approach taken for é’+. Finding the limiting values of Cy

is straightforward when the cases r < 1 and r > 1 are taken separately.
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