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ABSTRACT

Often the least appropriate assumption in traditional control charting technology is that process data constitute a
random sample. Inreality most process data are correl ated—either temporally, spatially, or due to nested sources
of variation.

One approach to monitoring temporally correl ated data uses a control chart on the forecast errorsfrom atime
series model of the process with, possibly, a transfer function term to model compensatory adjustments. If the
time series term is an integrated moving average, then a sudden leve shift in the process resultsin a patterned
shift in the mean of forecast errors. Initialy the mean shifts by the same amount as the process level but then it
decays geometrically back to zero corresponding to the ability of the forecast to “recover” from the upset. We
study 4 monitoring schemes: cumulative sums (CUSUMS), exponentially weighted moving averages, Shewhart
individuascharts, and alikelihood ratio scheme. Comparisonsof signaling probabilitiesand average run lengths
show that CUSUM s can be designed to perform at | east as good as, and often better than any of the other schemes.
Shewhart individua scharts often perform much worse than the others. Graphica aids are provided for designing
CUSUMSsin this context.

KEYWORDS: autocorrelation, control charts, cumulative sum, exponentially weighted moving average, like-
lihood ratio
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1 Monitoring Correlated Data

Too often a stream of manufacturing data that wanders about as in Figure 1 is subjected to a monitoring scheme
that expects observationsto behave like independent and identically distributed (iid) random variables. The “3-
standard deviation control l[imitsdrawn on the figure are cal cul ated by estimating the process variance using suc-
cessivedifferences. Of course, thislocal measure of varianceissmaller than thetotal variance because it does not
include variability due to the meandering level and, thus, the control chart shows a lack of “statistical control.”
All standard control charts for continuous measurements are based on local measures of variability precisaly so
they will signal when presented with non-iid dataasin Figure 1.
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Figure 1: Viscosity from successive batches of polymer resin corrected for adjustments of the catalyst amount.
The downward shift around batch 84 may have been preventableand it should have been detected by amonitoring
scheme. A standard control chart with widened control limits, however, might not have detected the shift.

Engineers needing to monitor thiskind of dataare usually well aware of itswandering nature and they do not
want a monitoring scheme to continually tell them what they already know. A common way to “fix” the problem
is to widen the control limits until a standard control chart rarely signals. This clearly reduces the number of
uninformativealarms, but it could a so make the chart useless for the purpose of signaling unusua behavior that
could lead to process improvement (Wardell, Moskowitz and Plante, 1992).

Thedatain Figure 1 represent consecutive batches of polymer from a process studied by Vander Widl, Tucker,
Faltin and Doganaksoy (1992). The plot showsviscosity measurements corrected for the effect of catalyst changes
which are routinely made in this process. In other words, the plotted viscosities are (approximately) what would
have resulted if the level of catalyst had remained fixed.

Clearly, the unadjusted process would wander and for thisreason the amount of catalyst used in agiven batch
was determined on the basis of previousviscosity deviationsfrom target through a combination of rules of thumb
and operator judgement. Figure2 showsactual viscosity measurements (top panel) and the corresponding catal yst
adjustments (lower panel.) By comparing with Figure 1 it is obvious that the adjustment scheme transfers some
(but not all) of the wandering from the viscosity measurements to the catalyst level, thus reducing variability in
viscosity. “3-standard deviation control limitson theviscosity plot are again based on successive differences. The
unusua behavior in period 84 stands out morethan in Figure 1 but the chart continuesto signal frequently because
viscosity measurements still tend to wander.

Vander Widl et a. (1992) developed a better catalyst adjustment scheme for this process to reduce viscosity
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Figure2: Actua viscosity measurements are shown inthetop panel withthe catalyst adjustments used to produce
them in the lower pand.



variations below that shown in Figure 2. Removing sources of variation, however, rather than just transferring
them to adjustment variables, is considered vita to the continued viability of this product. Reducing the process
standard deviation by even 5% could save millionsof dollars per year in waste and extra processing costs. Thus,
it isimportant to monitor viscosity and to signa unexpected abrupt changes that might have “ assignable causes.”
For example, the downward shift beginning with batch 84 could be the result of changing the feed stock from one
siloto another or of a sudden drop in the ambient temperature at the plant. If the cause were known, it could pos-
sibly be removed or at least preemptive compensations could be made. Upsets would then occur less frequently.

The viscosity application is representative of a general problem. Processes that tend to wander are often sub-
ject to adjustments—either automatic or manual. These adjustments usually reduce both the process variability
and autocorrelation. A disturbance, however, can knock the process off target until corrective feedback accom-
modates it. Detecting such events is the first step to understanding why they occur and preventing them in the
future.

Although a process under feedback control will not usualy be allowed to wander from target, any seria cor-
relation not removed by the adjustment rule can greatly influence the false alarm rate of a standard control chart.
Monitoring performance, however, can beisol ated from the adjustment rule by applying control chartsto forecast
errors from amodel of the entireinput-output system. Such amodel can include a deterministic term to describe
the effect of control actions and a time series noise term to describe the underlying autocorrel ated disturbance.
Unusua events then manifest themselves in the forecast errors which are nominaly iid. Linear transfer function
modelswith ARIMA noiseterms (Box and Jenkins, 1976) are arich class of models suitablefor this purpose. In
cases where the unadj usted process tends to wandey, first order integrated moving average (IMA) noisetermsare
often appropriate.

The purpose of this work isto compare the performance of several monitoring schemes applied to forecast
errorsfrom IMA processes. CUSUM charts of forecast errors are shown to provide good signaing performance
in response to abrupt shifts in the process level. A second purpose is, therefore, to provide general advice and
some graphical aids and for designing CUSUM chartsin this context.

1.1 Monitoring viscosity forecast errors

To preview the results of this paper let us reconsider the polymer example. Vander Wiel et a. (1992) modeled
viscosity measurements usingasimplelinear function of catalyst withan ARMA(1,1) noiseterm. Their estimated
mode! for the noise term (based on much more data than shown in Figure 1) had a correlation structure similar
to that of afirst order IMA with parameter A = 0.8 (see Section 2). In fact, the IMA modd fitsthe Figure 1 data
dightly better and we will adopt it for the remainder of the example. The top panel of Figure 3 shows one-step
ahead forecast errors. Using a 2-batch moving range we estimate the error standard deviation aso = 2.58. The
sharp drop in viscosities beginning with batch 84 appears as two large negative forecast errors that escape the 3¢
control limits. A large positive forecast error in period 87 reflects a sudden upward shift. The bottom panel of
Figure 3 is atwo-sided CUSUM chart [in Page's (1954) form ; see subsection 3.1] of the forecast errors. Both
charts provide good reason to search for a“special cause” beginning with period 84.

In Figure 3the CUSUM reference parameter £ = 1 x ¢ and the control limitsh = +2.36 were selected using
Figures5 and 6 to givean ARL of 250 for iid forecast errorsand to providethe best possible ARL for detecting a
rather large (specificaly, 46 = 10.3) shift in the viscosity level. We will see (Figure 6), however, that even for a
sustained 40 shift the ARL is 20 which may seem large. Thelarge ARL, however, isnot dueto adeficiency inthe
CUSUM chart. Rather, it reflects the limited information available in the data for detecting shifts. More insight
into thisis given in Section 2 which defines an IMA and shows how a shift in level affects forecast errors.

Section 3 discusses thedesign of CUSUM chartsfor IMA forecast errors. Making comparisonsunder 2 differ-
ent performance criteria, the section al so showsthat CUSUM s dominate Shewhart individual scharts, alikelihood
ratio scheme, and even exponentially weighted moving averages (EWMAS).

1.2 Rdevant literature

Performance properties such as ARLs have been widely tabulated for CUSUM charts and EWMA charts applied
to iid Gaussian sequences. See, for example, Goel and Wu (1971), Lucas and Crosier (1982), Crowder (1987),
and Lucas and Saccucci (1990). Run lengths from Shewhart individualsand X charts on iid data are geometri-
caly distributed and thus easy to analyze. Much less guidance, however, isavailable for choosing and designing
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Figure3: Thetop panel shows 1-step ahead forecast errors on a Shewhart individual schart with 3¢ control limits.
The lower panel isaCUSUM chart of the forecast errors. Both charts show strong evidence of an unusua event
beginningin period 84.



monitoring schemes appropriate for autocorrel ated data. Tracking signalshave been used to monitor performance
of forecasting systems for more than 30 years. Brown’s (1962) tracking signa is the cumulative sum of forecast
errors divided by an EWMA of their absolute values. Trigg (1964) replaced the cumulative sum in Brown’s nu-
merator with an EWMA. Golder and Settle (1976) simulated ARLSs of these tracking signals. Gardner (1983)
gave more extensive simulation results and introduced a tracking signal for detecting autocorrelationin thefore-
cast errors—an indication that the forecasts can be improved.

The approach of monitoring forecast errors has reemerged recently inthe quality improvement literature. Al-
wan and Roberts (1988) plot 1-step forecasts on a “common cause” chart with no control limits and plot fore-
cast errors on a“specia cause” chart with “3-standard deviation control limits. MacGregor (1988) outlines the
essential concepts of process monitoring using control charts and process adjustment (control) using dynamic
input-output model s with time series errors. He suggests using control charts “for analyzing control system per-
formance and as diagnostic toolsin control schemes.” Vander Widl et al. (1992) successfully implemented this
approach to control and monitor the batch polymerization process introduced above. After reducing the process
variability using a minimum variance adjustment a gorithm they monitored forecast errorsusinga CUSUM chart.
Others who suggest monitoring forecast errors are Montgomery and Friedman (1989), Harris and Ross (1991),
Montgomery and Mastrangelo (1991), and Box and Kramer (1992). Longnecker and Ryan (1992) study perfor-
mance of Shewhart individua schartson residuasfromARMA(1,1) and AR(2) processes. Supervilleand Adams
(1994) compare individuals, CUSUM, and EWMA charts of forecast errors for AR(1) models and argue against
using ARL s to select control charts for monitoring forecast errors. Instead they suggest using the probability of
signaling by afixed number of periods beyond the change point. The recommendation is based on the fact that
forecasts “recover” from abrupt changes and thus leave only a limited “window of opportunity” for detection.
Runger (1995) aso gives ARLsfor CUSUM chartsof AR(1) forecast errors. Lu and Reynolds (1994) investigate
EWMA and CUSUM charts applied to ARMA(1,1) processes and to their forecast errors.

When a process is stationary and autocorrel ation is mild there may be no advantage to using forecast errors.
For Gaussian AR(1) processes with alag-1 correlation of no more than 0.5 (Yashchin, 1993) showed that ARL
performance is virtually identical whether CUSUM-ing raw process measurements or their forecast errors. He
also gave a means to determine how wide control limits should be to achieve a specified false alarm rate when
CUSUM-ing autocorrelated data. Wardell, Moskowitz and Plante (1994) compared ARL performance of She-
whart individuas charts applied to forecast errors and to raw data from ARMA(1,1) processes. In many cases
when the lag-1 correlation was positive, the raw data scheme performed better.

Finally, severd early papers studied the affects of autocorrelation on various monitoring schemes. Goldsmith
and Whitfield (1961) showed that negativeautocorrel ation can decrease falseaarmratesfor CUSUM charts. Con-
versely, positive autocorrelation increases rates. Additional studies have been reported by Johnson and Bagshaw
(1974), Bagshaw and Johnson (1975), and Vasilopoulos and Stamboulis (1978).

2 Integrated moving averagesand level shifts

Industrial data that would wander if no compensating actions were taken can often be modeled using afirst or-
der IMA noiseterm in a model with a deterministic component to describe the effects of adjustments. A linear
regression of viscosity on catalyst amount with an IMA noise term provides a reasonabl e fit to the viscosity data
in Figure 2. Box and Kramer (1992) and MacGregor (1988) place specia importance on the IMA noise model
because it sensibly fits data from a wide variety of industrial and economic processes. IMAS are often used to
model stochastic disturbances in automatic control applications because the popular proportional-integral (PI)
controller is optimal for first order input-output systems with IMA disturbances. A huge number of successful
feedback loops under PI control in a wide range of applicationsis evidence that IMA approximations to corre-
lated disturbances are useful (MacGregor, 1988).

Box and Kramer (1992) argue the appropriateness of IMAs based on the fact that the variance of lag-£ differ-
encesincreaseslinearly with k, evenfor large k. Often, however, only the short-lag autocorrel ationshave practical
significance for forecasting, monitoring, and control. Thus, choosing between a non-stationary IMA model or a
stationary ARMA model with asimilar correlation structureis not too important.



We will defineaprocess N; (t = 0,1,2,...) asafirst order IMA if

t—1

Nt:at‘i'AEai

=0

where the o’s are iid N (0, 0?%) variatesand A € [0,1]. An IMA with X # 0 is non-stationary with variance
o?(1 + A%t) increasing linearly in¢. The increments

Nt — Nt—l = ¢y — (1 — A)Ozt_l

form afirst order moving average. Special cases of the IMA family arisswhen A = 0 giving an iid process and
when A = 1 giving arandom walk. For A € (0, 1) the IMA is equivalent to a random walk observed with iid
measurement error (Box and Jenkins, 1976, Chapter 4).

The left column of plotsin Figure 4 shows 250 observationsfrom simulated IMAswith o = 1 and A varying
from0to 1 in successive rows. Each panel uses the same set of «s. Notice how the IMAswander morefor larger
values of A. The remainder of Figure 4 is discussed below.

An estimate ) of A can be used to form 1-step ahead forecasts of the IMA. The usua forecast of N, based
on(Ng,...,N¢)is

Nigaje = ANg + (1 = M) Ny 1)

wheretherecursionisstarted from ]\70|_1 =0. NHW isan exponentially weighted moving average (EWMA) of

the observed values of theIMA from Ng through N;. If A=, Nt+1|t isaminimum mean square error forecast
of N;y1. Theforecast error in periodt is i
a; = Nt — Nt|t—1~ (2)

This definition givesa; = a; — (A — A) oi_, (1 = Ay~ tay_; (fort > 1) s0ay ~ a; if A & A. The maximum
likelihood estimator A minimizes 3~ a,2.

For processes under feedback control, N; represents the actua process measurement minus an amount to ac-
count for the effects of previous control actions. Formulas for computing forecasts for transfer function models
are simple linear recursions in the same spirit as (1). See Box and Jenkins (1976) for details. With this under-
standing of N;, the development and results that follow apply to transfer function models with IMA noiseterms
aswell as pure IMA models.

An important standard for comparing control charts has been how quickly they detect a sudden sustained shift
inthe process level. Thisis measured by the probabilistic characteristics of run lengthswhere arun lengthisthe
number of periodsbetween a step shift and thefirst signal of the control chart. In particular, the average runlength
(ARL) has been emphasized. It isimportant to detect step shiftsin processes that wander. If a sudden shift can
be detected, it might be possible to remove the cause, eliminate a source of variability, and improve the process.

But a step change is more difficult to see when buried in an IMA than when buried iniid noise. The middie
column of plotsin Figure 4 shows the same IMAs as in the left column but with a step shift of 50 beginning in
period 150. The shift standsout in theiid (A = 0) sequence but is less obviousas A increases. For example, the
random walk (A = 1) drops abruptly around period 45 by an amount similar to the sharp increase at period 150.
The first change, however is due to several consecutive negative «’s whilethe second isarea shift inthe level
(or equivaently one huge o)

Oneway to understand why shiftsare easier to see for smaller A isto consider how evidence of ashift buildsas
dataaccumulates. At period 151, each plot in the center column steps upward by about 50 signifying a probable
shift. Intheiid plot al doubt about whether a shift really occurred isgone by, say, period 160, because each of the
last 10 observationsisabout 50 higher than thefirst 150. In the random walk plot, however, al the information
about a shift comes in period 150 and new data contributes no new information because the random walk simply
takesiid stepsfrom itsmost recent position. For A = 0.5 some evidence of a shift accumul atesin the periodsjust
after 150, but by, say, period 175 the process has wandered enough that new observations are not relevant to what
happened at period 150. For middling values of A it istricky to mentally judge how much of what we see isdue
to the 50 shift and how much is due to autocorrelation. Looking at the affect of a shift on the forecast errors a
helps remove the ambiguity.
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Figure4: Simulated IMAs (left column), IMAswith a5 shift at period 150 (center column), and forecast errors
(right column). IMAs (left) wander more as A increases. The wandering makes step shiftsin the level (center)
more difficult to see as A increases. Step shiftsin thel M As cause a patterned change in theforecast errors (right).
The mean functions of the forecast errors are plotted in the bottom portion of these plots (shifted away from zero
for clarity). It jumps by an amount equal to the size of the shift in the IMA and then decays back to zero a a
geometric rate of 1 — A.



Suppose aprocess 7; behaveslikean IMA but experiences a step shift of size pinitslevel at some period £.
That is,
Zt = Nt, tzl,,k—l
= Nt—f‘/l, t:k,k’—‘rl,

where N; isan IMA. If equation (2) (with A = A for simplicity) isappliedto Z, theforecast errorsa; will continue
to beindependent normal variateswith variance o but their mean will not be zero in periods & and following. In
fact,
Ea; = 0, t=1,... k=1 3)
= /A(l—A)t_k, t=kk+1,....

See also Harrisand Ross (1991). The mean shiftsto i in period & and returns exponentialy to O thereafter. The
return isfaster for larger ).

Evidence of ashiftinlevel iseasier to judge by searching for ageometric pattern in the sequence of forecast
errors than by looking at a plot of raw data. This is because we do not have to mentally untangle the effects of
autocorrel ation from the effects of a possible shift. The forecast errors are not correlated and alevel shift in the
IMA creates a simple pattern in their mean. The pattern is seen in the third column of plotsin Figure 4 which
shows the forecast errors computed from the IMAs with shifts shown in the center column. The patterned mean
isevident in the forecast errors and is shown (shifted downward for clarity) in the lower portion of each forecast
error plot.

3 Comparisonsof monitoring schemes

This section describes and compares several schemes for using forecast errors to monitor IMAS for step shifts.
We study signaling performance of 4 different classes of monitoring schemes: CUSUMs, EWMAS, Shewhart
individuas, and schemes that use likelihood ratio statistics. Each class is described below and some guidance
isgiven for choosing a particular scheme from within a class. Monitoring schemes are compared based on two
criteria ARLsfor shiftsof varioussizes, and the probability of signalingwithin 10 periods of the onset of a shift,
which we denote by P(10).

For the special cases of iid observations (A = 0) and arandom walk (A = 1) good monitoring schemes seem
obvious. Intheiid case the forecast errors are identical to the processitself. A step in the level of the process
is therefore a step in the mean of the forecast errors. This is the situation traditionally addressed in studies of
control chart performance. The literature showsthat for small and medium sized shifts(up to roughly 2.5¢0), itis
difficult to beat the ARL performance of properly designed CUSUM and EWMA charts. For large shifts Shewhart
individuas charts perform best. Combining an EWMA or a CUSUM chart with a Shewhart individuals chart
resultsin a control scheme with good ARL performance for both large and small shifts (Lucas, 1982).

Inthecase of arandomwalk (A = 1) astep shiftinthe processresultsin asingleforecast error with anon-zero
mean. A scheme that uses more that the most recent forecast error will only weaken the evidence of ashift. The
best choice for thiscase isan individualschart.

If A € (0,1), the best approach to monitoring for step shiftsis not obvious. Since the Shewhart individu-
als chart isa specia case of both EWMASs and CUSUMSs, it seems plausible that for each A an EWMA chart or
a CUSUM chart could be constructed to give good signaling performance. But it also seems plausible that bet-
ter performance than both the EWMA and the CUSUM could be attained by a scheme (like the likelihood ratio
scheme described below) which is sensitive to a specific pattern of geometric decay in the forecast errors. The
comparisons in Subsection 3.2 show that the first of these hunchesistrue for the CUSUM. That is, for agiven A
and shift size, a CUSUM chart can be designed to give good signaling performance in terms of either ARLSs or
P(10)’s. Properly designed CUSUMsare usually better than likelihood ratio schemes and sometimes outperform
EWMASs. They are often much better than individual scharts.

3.1 Four classes of monitoring schemes

For each class of monitoring scheme we indicate how action limits can be selected to provide a given ARL or
P(10) value when no shift occurs. This determination isimportant for comparing several schemes because, to
befair, al schemes under consideration should have either the same ARL or the same P(10) valuewhen no shift
occurs. We use ARL and P;(10) to denote these so-called “in control” quantities.
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Figure5: Plotsto determinetheaction limit 4 yieldingagiven ARL or Py(10) for variousvalues of the CUSUM
reference level k.

In the descriptions below a; refers to forecast errors calculated using (2). Nominally, they should approxi-
mate an iid N (0, 0?) sequence. Since we do not consider the effects of estimating o, we assume o = 1. Thisis
equivalent to assuming that the forecast errors have been scaled by dividing through by o.

Subsection 3.3 outlinesthe computationswe used for ARLs and signaling probabilitiesof thevariousschemes.

Shewhart individualschart: Thissimply signalswhen |a;| exceeds an action limit 2. The action limit can
be set to give adesired ARL or Py(10) by taking —A to be respectively the 1/(2 x ARL) quantileor the [1 —
(1 — Py(10))'/19]/2 quantile of the standard normal distribution.

CUSUM: A (2-sided) CUSUM scheme isbased on ahigh side statistic H; and alow side statistic L;:

H, = max{0,a; —k+ Hi_1}
Ly = max{0,—a;—k+ L;—1}

where Hy and L, areinitidized at zero. H, is sensitive to changes causing an increase in the mean of a; while
L, issensitiveto changes causing adecrease. The scheme signalswhen max{L;, H;} exceeds an action limit A.
The reference level k and the action limit ~ are design parameters. Typicaly £ is set between 0.250 and 1.50.
For agiven k, h can be selected to produce a desired ARL or Py(10). The left panel of Figure 5 shows curves
of h versus k for three values of ARLy: 100, 250, and 500. The right panel shows h versus & for three values of
Py(10): 1/10,1/25, and 1/50. Given k and either ARL, or Py(10), the appropriate curve can be used to find
h. Setting ~ = 0 mimics a Shewhart individualschart with “%-sigma’ limits applied to the forecast errors. Gan
(1991) gives more extensive versions of the ARL contours shown in Figure 5.

The choiceof k givessomeflexibilityin ARL performance when shiftsoccur. Figure6isan aid for choosing a
valueof k£ for aparticular application. The panelsin Figure6 show ARLsfor variousvaluesof A, p (theshift size),
and k£ with h selected (from Figure5) to provideagiven ARL ;. The panelsare arranged so that columns represent
valuesof A from 0to 0.5 and rowsrepresent values of i from 0.5to 4. Each panel has 3 curves. Thelower, middle
and upper curves correspond to chartsdesigned to have ARL  values of 100, 250 and 500 respectively. Each curve
shows ARLsfor steps of size i for variousvaluesof k. A similar figure has been constructed based on the P(10)
criterion but it is not shown here because CUSUM designs using it would not be substantively different.

To choose avauefor £ in aparticular application, look at the column of plots corresponding to A nearest the
estimated value. Now focus onthe ARL curvein each panel of that column that represents avalue of ARL ; close
to the one desired. Finally, visually choose avaue of £ that giveslow ARLs for the sizes of shiftsthat are most
important. This step may involve trading off performance for shifts of one size for better detection of shifts of
another.
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Asan example, suppose X is estimated to be near 0.1. From the curvesin the second column of plots, we see
that the middle pandl is most interesting. Shiftsof 0.5¢ (top panel) are nearly impossibleto detect regardless of
thevalue of £. Their ARL curvesdrop only dightly below ARL ;. On the other hand shifts of 4o~ (bottom pane!)
are detected quickly aslong as k is at least 0.5. For 2¢ shifts, values of k£ between 0.25 and 0.5 givethe smallest
ARLs. Other values can result in substantially worse performance. A valueof & = 0.5 is areasonable choice.
Referring to Figure 5, h should be set at about 3.5, 4.4, or 5.1 to give ARL ; near 100, 250, or 500 respectively.

The other columns of Figure 6 can be used similarly. Usualy the range of reasonable values for & is fairly
obvious. Panelsfor values of A exceeding 0.5 are not shown because they are very similar to thosefor A = 0.5.

Several other aspects of Figure 6 are noteworthy. One striking featureisthat the larger A is, the more difficult
it isto detect shiftsof agiven size. With A = 0.5, we have virtually no power to detect even 2 standard deviation
shifts. Thisis as we should expect from the discussion of Figure 4. The most interesting panelsin Figure 6 lie
near the top-l€eft to bottom-right diagonal. In these panels the best value of £ dependson A. Getting small ARLs
for small shiftsinan iid process (A = 0) requires k£ near 0.25 wheress getting reasonably small ARLs for large
shiftswhen A is0.5 or higher requires £ to be closeto 1.0 or higher. Thisshould be useful for control chart design
and it follows the traditional wisdom for CUSUM charts that small values of & produce better ARLSs for small
shiftswhilelarge values of & give better ARLs for large shifts.

EWMA: An EWMA monitoring scheme is based on an exponentially weighted moving average of thefore-
cast errors:

Qi =7var+ (1 —7)Qi—1

where Qq isinitialized a zero. The scheme signalswhen |Q| exceeds an action limit. The weight v € (0, 1] and
the action limit ~ are design parameters. Choosingy and A for an EWMA scheme issimilar to choosing £ and A
for aCUSUM scheme. Plots, of h versus+ (similar tothe h versus k plotsfor the CUSUM) can be constructed to
determine the EWMA control limit whichyieldsagiven ARL or Py(10). Similarly, one could produce afigure
for the EWMA, similar to Figure 6 for the CUSUM. In subsection 3.2, however, CUSUMs are shown to perform
at least as well as and sometimes better than EWMAS. Thus, we provide design aids only for CUSUM schemes.

Likelihood ratio scheme: A monitoring scheme based on likelihood ratio statistics can take advantage of the
patterned change that occurs in the mean of the forecast errors when an IMA undergoes a step shift. To make
the scheme manageable we limit the data used in period ¢ to the last n + 1 forecast errors (a;—, . .., a¢). The
forecast errorsdepend on all of the available data, however. For thecomparisonsin the next section we considered
n+ 1 = 3, 5and 9 and found that the sample size made very little difference in ARL or P(10) performance
except intheiid case (A = 0) for small shifts. Then larger values of n were helpful. Based on (a+_, .. ., a;), the
likelihood ratio statistictotest for astep shift occurring anywhere between period ¢ —n and period ¢ isamonotone
function of

7| @

U; = max
k=0,...,n

WhereZ,(ct) isthe“Z-statitic” in theregression of (a;_x, ar—r41,...,a;) on(1,1— X, ... (1 — X)*), namely

1/2

A= L3t / [

=0 =0

A ]gt) issensitiveto ageometrically decaying patternin theforecast errorsthat startsinperiod¢— . Thus, U/; should
be sensitiveto astep shiftinthe IMA that beginsin any one of the most recent n + 1 periods. Thelikelihoodratio
monitoring scheme signalswhen U; exceeds an action limit 2 whichispickedtoyield adesired ARL or Py(10).
Vander Wil (1994) studies the null distribution of U; for the purpose of hypothesistesting.

3.2 Comparisons among schemes

Having introduced 4 classes of monitoring schemes, what can be said about their relative performances?

Figure 7 shows optimal ARL curvesfor IMA processes with parameters ranging from A = 0 inthe upper | eft
panel to A = 1 inthelower right one. Each curveisafunction of the shift size y and shows the minimum ARL
that can be achieved withinthe given class of schemes subject totheconstraint ARL, = 500. Generally, nosingle
scheme within a class can attain the minimum ARL for severa shift sizes so the optimal scheme changes with .
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For example, withinthe CUSUM curves, k changeswith y to achieve the minimum ARL. Thus, Figure 6 should
be used to judge how well a CUSUM chart optimized for one value of p will perform for others.

Figure8showsoptimal 1/P(10) curves constructedinalikemanner. Each curveshowstheminimum1/P(10)
valuethat can be achieved withinthe given class of schemes subject totheconstraint 1/ P,(10) = 50. Theinverse
of P(10) isused to facilitate comparisons between Figures 7 and 8; it isthe average number of independent trials
it would take for a scheme to signal a shift within 10 periods of itsonset.

The conclusionsdrawnfrom Figures7 and 8 areremarkably simple. Namely, for agivensized shift,aCUSUM
can be designed with respect to either the ARL criterion or the P(10) criterion to perform at least as well as,
and often better than, any of the other schemes. For the P(10) criterion, our comparisons show a clear ordering
of the 4 schemes. CUSUMs and EWMASs perform equally well, followed by likelihood ratio schemes and then
by Shewhart individualscharts. For the ARL criterion CUSUMSs always perform best and Shewhart individua's
charts worst. The ordering between the EWMA and the likelihood ratio scheme, however, depends on A.

Shewhart individua s charts sometimes preform miserably and never do better than the others. In the case
of random walks (A = 1), dl schemes have equally poor performances. In fact, for random walks, the optimal
member of each class reduces to a Shewhart individuals chart. A final broad observation from Figures 7 and 8
has already been made but bears repeating: it is substantially more difficult to detect level shiftsin IMAs as A
increases.

3.3 Computing ARLs and signaling probabilities

Three good waysto studying therun length distributionof amonitoring scheme are (1) andytically derivingit; (2)
approximating it by way of a discrete Markov Chain representation; and (3) building it up through Monte Carlo
simulation. A fourth method is to derive and solve an integral equation satisfied by the ARL. That, however,
is equivaent to the Markov Chain approximation up to a choice of an integration quadrature (Champ and Rig-
don, 1991). We have used all three methodsin thiswork. The S functions (Becker, Chambers and Wilks, 1988)
used to generate the datafor Figures 5 and 6 and comparabl e datafor EWMA charts are available as aUnix com-
pressed shar filei ma. arl . shar . Z ontheworld wideweb at URL
http://netlib.att.comnetlib/att/stat/prog/index.htm orbyanonymousftp from
netlib.att.conlnetlib/att/stat/prog. Shewhartindividuaschartsaresimpleenoughtolendthem-
selves to analytical methods even when applied to monitoring IMA forecast errors. Survival probabilitiesof the
time T of thefirst signal after ashift, can be builtup using Pr{7" > 0} = 1 and therecursion (for ¢ > 1)

Pr{T >t} =p: Pr{T >1t—1}.

wherep; = @ (h — p(1 — A)'=1) =@ (—h — p(1 — X)'=') with @ denoting the standard normal CDF. The ARL
isthe sum of these survivor probabilities. Intheextreme cases of A = 0 or 1therecursionistrivia and computing
the ARL involvessumming ageometric sequence. For A € (0, 1), p; quickly approachesalimit, p,, and theARL
can be approximated as

T7—1
p1---Pr
ARL ~ _ 5
;(Po P+ (5)
where 7 isalarge positiveinteger and pg = 1.
Because p; increasesto p.., the approximation error islessthan

( ) < 1 1 )
n br I — poo T—prp1 .

Thus, an easy method to obtain the ARL is to continue summing in in (5) until the error bound is as small as
required.

Simpleanalytical resultsare not availablefor deriving run lengthdistributionsfor CUSUM and EWMA schemes
even when they are applied to iid Gaussian sequences. A computationa technique based on Markov Chainsis
available, however. The basicideaisto discretizethe“in control” region (—h, h), representing it by anumber of
singletons. Properties of discretized CUSUMs or EWMAS are then derived from transition probability matrices
P, withentry (4, 7) equal to the probability of moving to state j in period¢ conditional on beingin statei in period
t—1. Therowsof P; donot generally sumto 1 because thestate space only represents(—h, k) and thereisaways
aprobability of signaling.
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Figure 7: Optimal ARLs among 4 classes of monitoring schemes. CUSUMs dominate the other schemes and the
Shewhart individualschart is only competitive for random walks (A = 1). Each curve shows the minimum ARL
that can be achieved for various values of i subject to ARLy = 500
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Figure8: Optimal valuesof 1/ P(10) among 4 classes of monitoring schemes. CUSUMs and EWMAs dominate
the likelihood ratio scheme which dominates the Shewhart individuals chart. Each curve shows the minimum
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Brook and Evans (1972) were thefirst to analyze CUSUMs by Markov Chains. Woodall (1984) gives details
for efficiently representing the state space for 2-sided CUSUMsand for cal cul ating transition probability matrices.
Lucas and Saccucci (1990) give details for EWMA schemes. In these studies, however, the transition matrices
P, did not depend on ¢ because the observationsfollowing a shift in the mean were iid. For IMA monitoring we
have seen that the forecast errorswill be independent with constant variance and a patterned mean that converges
geometrically to zero. Thus, P; changes with ¢, but converges ast¢ becomes large.

If = isaprior probability vector for the state of the Markov chain in period 0, then surviva probabilities of
the discretized scheme are given by

Pr{T >t} ==n'Py---P1

where Py istheidentity matrix. The ARL isthe sum of these probabilitiesand can be approximated by

T—1
ARLz ' | (Py- P+ (Po- - Pr)(I— P)7'| 1. (6)
t=0
where P iseither P, or thelimit matrix P.,. Assuming that thetwo choicesof P give ARLsthat bracket that of
the discretized scheme, weincreased 7 until either therelative error was less than 0.1% or the absolute error was
lessthan 0.01 or the mean of theforecast errorswaslessthan 0.001. [ The bracketing result isnot difficult to prove
for (continuous) 1-sided EWMA and CUSUM schemes using the fact that the plotted quantities are increasing
functionsof theforecast errors; 2-sided schemes, however, are more difficult to analyze and discretization further
complicates matters.)

For EWMA calculationswe used 96 statesin (—h, h). For 2-sided CUSUMsthe state space is 2-dimensional,
and thus grows quickly as the number, d, of discrete values in each dimension isincreased. For thisreason, we
follow the procedure of Brook and Evans (1972) of computing the ARL for several valuesof d and reporting the
ARL of the continuous-state procedure as the least squaresintercept in aregression of ARL on 1/d and 1/d?. For
the 2-sided CUSUM, weused d = 4,7, 8, 9, 10.

It still remains to specify the prior probabilities, r, on theinitial state. Two reasonable aternativesare (1) to
let = be an indicator vector pointing to the state with the CUSUM or EWMA equal to zero; or (2) to let = be the
vector of steady state probabilitiesof the Markov chain with ¢ = 0 and conditiona on not signaling. Werefer to
the first alternative as a cold start and the second as a warm start. All figures in thiswork are for cold starts but
we have calculated some ARLSs for warm starts and found that they differ by immaterial amounts from the cold
start values.

To find & corresponding to a given ARL [or Py(10)] for CUSUM and EWMA schemes we first found two
valuesof A whose ARL's[or Py(10)’s] bracketed the target value. Then we used the bi section method (for find-
ing aroot) to home in on the desired value of .

Thelikelihoodratio scheme lendsitself to neither analytical nor numerical analysisusing Markov chain meth-
ods. In this case ARLs and signaling probabilities were approximated using Monte Carlo simulation. For the
simulation, we used simple FORTRAN code linked to control functions writtenin S (Becker et d., 1988). We
also used smulation to verify Markov chain calculationsfor EWMA and CUSUM schemes.

For ARLsweaveraged 10,000 run lengthswhere each run started from alevel shift beginninginthefirst period
and where forecast errorsfor previous periods were taken to be zero. Thisisanalogousto computing “cold start”
ARLSs for Markovian schemes. If the run length distribution is crudely approximated as geometric with mean
and standard deviation equal to the ARL, then 10,000 runs produces estimated ARLswith standard errors of 1%.
(Simulation data shows that the equal mean and standard deviation assumption is roughly correct.) For P(10)
values we used the fraction of signalsby period 10 in 40,000 runs. Using the binomia variance, standard errors
for estimated signaling probabilitiesare less than 0.15% when the nominal probability isno greater than 1/10, as
isthecasefor all of our comparisons. All Markov chain computationswere verified to agree towithin 3.5 standard
errors of estimates obtained from the simulations.

4 Summary and Discussion

41 Summary

For many years the process monitoring field has not dealt squarely with the fact that most time-ordered data are
autocorrelated. In fact, most monitoring schemes still use only the most basic statistical models assuming that
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datawill congtitute simple random samples from a specified distribution. For data with substantial positive auto-
correlation, standard control chartswill signal much too frequently.

This paper has addressed statistical process monitoring for the case when the stochasti c component of process
dataiswell modeled as an integrated moving average (IMA) process. Typically such a process will be operated
under feedback control. A sustained shiftinthe underlyingleve of the process|eavesforecast errorsindependent
with constant variance but causes a patterned response in their mean consisting of an initial jump followed by a
geometric decay to zero.

Comparisonsamong 4 classes of monitoring schemes applied to forecast errorsshowed that properly designed
CUSUMs perform as well as and often better than any of the other schemes. Likelihood ratio schemes and es-
pecially EWMA charts are also competitive but can sometimes be beaten by CUSUMs. Shewhart individuals
charts are often much less sensitiveto level shiftsthan the others. Further studiesof CUSUM and EWMA perfor-
mance and design sensitivity can be conducted using S functions (Becker et al., 1988) available from the author
as described in Subsection 3.3.

4.2 Generalizingto ARIMA Processes

This work has focused on performance of forecast monitoring schemes for the important case in which the un-
derlying stochastic nature of a process can be modeled as an IMA. The methods, however, can aso be applied to
assess performance for detecting abrupt changes in the level of agenera ARIMA model. Consider monitoring a
series Z, = pl[t > k]+ N; where N, isan ARIMA (p,d,q) process satisfying ¢(B)(1— B)? N; = 6(B)a, where,
according to standard notation and assumptions, a; isan iid N(0, o%) sequence, B isthe backshift operator, and
¢(B) and §( B) are polynomials of respective degrees p and ¢ with rootslying outside the unit disc. In thiscase,
1-step ahead forecast errorsof 7; aregivenby 7, — Zt|t_1 = pbi_p + o Where

Si—p =

The sequence of deterministic means pé;_ is zero until until period £ when the sequence responds in a pre-
determined manner to the abrupt shift in level. Based on the theory of finite difference equations (for example,
Goldberg (1958) or Fuller (1976)), the pattern will tend to an asymptotic level exponentially fast. For stationary
models (d = 0) the new level will be nonzero while for nonstationary models (d > 1) the pattern tends to zero.
Thisbehavior alowsanalyses of run length behavior for Shewhart individuals, CUSUM and EWMA chartsto be
carried out using theana ytic and Markov Chain techniques presented here for theIMA case. Incomputing ARLS,
for example, oncethe mean issuitably closeto itsasymptote, the remainder of the scheme can betreated asif new
observations are iid. Wardell et a. (1994) give details for computing the run length distribution for individuals
charts of forecast errors from stationary ARMA models.

It does not seem profitable, to tabulate ARLSs for various monitoring schemes under a large number of dif-
ferent ARIMA models. It would be more useful to provide a tool for making the appropriate computations as
they are required. Another useful approach for general ARIMA models would be to determine how broadly the
recommendations given here apply in the larger class.

Do CUSUM charts dominate in run length performance when applied to other ARIMA models? Intuition
suggeststhey will dominatefor model sthat produce mean patternssimilar to the exponentia decays coming from
IMA models. In some cases, however, the mean pattern will not remain on one side of zero. If thesign aternates,
one would expect better performance by CUSUM-ing forecast errors with alternating signs. For other kinds of
sign changes it is not clear that a CUSUM or EWMA would be appropriate. For example, if the mean pattern
were a sowly damped sinusoid, perhaps the likelihood ratio scheme would dominate the others. Perhaps the
CUSCORE tatistics of Box and Ramirez (1992) could be used in this case.

4.3 Further Commentary

The likelihood ratio scheme might seem to be too oriented toward detecting a step shift when compared to the
individuas, CUSUM, and EWMA charts which are usually thought of as“ general purpose”’ charts for monitoring
amean. All forms of deterministic level change, however, such as aramp or spike will manifest themselves (in
filtered form) in the forecast errors means. Forecast errors persistently to one side of zero affect the likelihood
ratio scheme in (more or less) the same manner they affect the other schemes—namely, they push the plotted
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dtatistic toward an action limit. The likelihood ratio scheme istuned to the particular case of an underlying step
shift. If an application required, the scheme could be derived assuming aramp, spike, sinusoid or any other form
of process upset.

All of the control charts presented here might be criticized for sometimes having huge ARL s when measured
against typical ARLsfor monitoring the mean of uncorrelated data. We have already argued that these differences
do not necessarily reflect weaknesses of the monitoring schemes but rather reflect thelimited information content
of the data. Simply stated, step shifts are more difficult to see within wandering processes. Also, a mitigating
factor to the high ARLs isthat wandering processes are often under some form of active feedback control. Thus,
abrupt changes are compensated for even if they are never explicitly detected. The effect of any particular up-
set istypicaly short lived. Nevertheless, if an upset can be detected and diagnosed, possibly the source can be
eliminated resulting in a process with fewer problemsin the future.

Itisimportant to admit that the quantitative ARL and P(10) results presented here assume that the wandering
disturbance affecting a processisknownto be an IMA with known parameters. Inredlity, model formsare amost
never known, parameters are never constant, and their estimates are never perfect. A small study of CUSUM
ARLswhen ) is misestimated showsthat they are most sensitive to misestimation for small A and small shift size
4. For example consider an estimated value A = 0.5 and a CUSUM designed with ARL, = 500 and k = 1.25.
The actual ARL variesfrom —40% to +35% asthetrue A variesfrom 0.4 t0 0.6. ARLsfor 4o shiftsvary from
—20% to +10%. Analogous results are more extreme for smaller A and less extreme for larger A. Non-Gaussian
data and imprecise knowledge of ¢ can aso greatly affect ARL performance as they do in standard iid process
monitoring settings.

Inlight of thesensitivity tomodel assumptions, ARL and P(10) cal cul ationsshould not betaken too seriously.
It isthe qualitative results of thiswork that are most usable: namely, CUSUM charts of forecast errors perform
competitively for processes that wander. The closer to a random walk the wandering becomes, the more like
a Shewhart individuas chart the CUSUM should be designed. And finally, smaller values of k& work better for
detecting smaller shiftsand vice versa.

In thisregard the levels of ;1 and A displayed in Figure 6 were selected so as to cover the qudlitatively inter-
esting ARL featuresin theranges ¢ € [0,4] and A € [0, 1]. Plots could be constructed to allow more precise
determination of the k that minimizes ARL for agiven shift size. The important practica use of Figures5 and 6,
however, isto choose values of h and £ that areintheright “ball park” and to get arough indication of how read-
ily the chart can detect shifts of various sizes. Since ARLSs are notorioudly sensitive to assumptions which, in
practice, are never true, precise choice of CUSUM parameters is hot necessary for practical problems.
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