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ABSTRACT

Diameter measurements on successive metal hubs from a machining operation are modeled
using a random walk with observation error and linear drift corresponding to tool wear. After
producing and measuring a hub the depth of the cutting tool can be adjusted an integer number
of tenths (0.0001 inches.) How should the tool be adjusted?

This paper studies a version of the problem omitting tool wear. The objective is to minimize
run costs proportional to the sum of squared diameter deviations from a target plus fixed
charges for tool adjustments. The optimal strategy makes no adjustment if an estimate of the
process mean is near target. Otherwise, an adjustment is made to return the estimated mean
as near to target as possible within the adjustment resolution.

The region where no adjustments are made widens near the end of the production run where
adjustments have only short term impact. The region converges as the number of remaining
periods increases. Plots of expected run costs show that the extra cost of discreteness is small
at high resolution but is substantial when the adjustment grid is coarse.

Keywords: feedback control, minimum cost, fixed adjustment cost
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1 INTRODUCTION

In a particular machining operation producing metal hubs, adjustments to the depth of a
cutting tool are made in multiples of 1 tenth (0.0001 inch.) This compares to a specification
tolerance on the hub diameter of +5 tenths and typical diameter ranges of less than 2 tenths
in samples of, say, 5 consecutive parts. On this basis it is natural to question whether the
discreteness of tool adjustments substantially interferes with the goal of machining parts with
diameters near a target value.

Of course, the answer depends on many factors such as the meaning of “substantially
interfere” and the stochastic structure (if any) of consecutive measurements. For the machining
operation it is reasonable to model consecutive part diameters using a random walk with
observation error and linear drift (corresponding to tool wear.) If performance is measured by
the sum of a fixed adjustment cost and a variable (for example, squared deviation) off target
cost, it is possible to derive an optimal tool adjustment strategy for a simpler model omitting
tool wear. The optimal strategy adjusts only if the current estimate of the location of the
random walk deviates from the target diameter by more than a certain amount. An optimal
nonzero adjustment is to compensate (as nearly as possible) for the deviation of the current
estimate from its target level. Numerical calculations of optimal expected costs help quantify
the intuitive result that coarser adjustment resolutions give rise to increasingly higher expected
production costs.

Section 2 of this paper describes the hub machining operation. The random walk model
with observation error and linear tool wear is shown to provide a reasonable fit to a set of
successive diameter measurements. Section 3 discusses the optimal adjustment strategy for
the fitted model ignoring tool wear. Plots are provided showing deadband limits (within
which no adjustments are made) and optimal expected costs for various levels of adjustment
resolution. Section 4 is an analytical derivation of the optimal discrete adjustment policy using
dynamic programming. Section 5 studies convergence of the deadband limits and expected cost
functions as the number of periods remaining in a run increases. A summary and review of
some relevant literature is given in Section 6.

2 A MACHINING APPLICATION

This section describes an actual machining step in the production of metal hubs. Data from a
study of the process is presented and a portion of this data is modeled as a random walk with
observation error and linear drift.

2.1 Description

A horizontal bar lathe at a manufacturing site produces metal hubs (see the simplified diagram
in Figure 1). Finished hubs can be loaded into an automatic gaging device to measure several
key part dimensions including the outside diameter. The nominal diameter is 1.501 inches with
a specification tolerance of +5 tenths. The gaging process is known to contribute moderately
to the observed variation of diameter measurements. Figure 2 is a plot of outside diameter
measurements obtained on 150 consecutive hubs machined during a study of the machine tool.
Measurements were taken on every hub produced.
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Figure 1: Diagram of metal hub

During the 7 1/2 hour study period, one adjustment (of —8 tenths) was made to the
cutting tool position and this took place after the 75th hub was turned. The values plotted in
Figure 2 are corrected to show the diameters which “would” have resulted had no offset been
made. It is significant that the smallest adjustment which can be made on this tool is 1 tenth
and that this is of the same order of magnitude as typical diameter ranges from small samples
of consecutive parts. Most ranges lie between 0.5 and 1.5 tenths for samples of 5. Thus, it is
sensible to explicitly consider adjustment discreteness in this application.

Several aspects of the machining operation are immediately clear from the plot in Figure 2.
During production of the first 126 hubs it is evident that the diameters tend to increase roughly
linearly. This can be attributed to progressive wear of the cutting tool. In fact, because of
wear, the tool is usually (though not during the study) replaced with a refurbished one after
approximately every 75 hubs. Secondly, after hub 126 the diameters jump dramatically and
show a downward trend for about 20 hubs. This behavior is explained by a 20 minute break
taken by the operator. During the break the lathe was turned off and the hydraulic system
cooled from its “steady state” temperature. Cooler hydraulics reduced the force holding the
cutting tool in position and thus rendered the tool effectively further from the workpiece. The
effect appears to have decreased as the system warmed to its normal operating temperature
over the final 24 parts in the study.

2.2 State Space Model

Transient effects such as hydraulic warm up are not considered in this paper. Hence, the final
24 hub diameter measurements following the operator’s break are not included in the following
analysis.

The top two panels of Figure 3 show the sample autocorrelation function (ACF) and sample
partial autocorrelation function (PACF') of residuals from a simple linear regression fit using
ordinary least squares. The hashed lines are approximate 2 standard error bands appropriate
if the residuals are uncorrelated. Clearly there is predictive information in the measurements
beyond that of a simple linear trend.

A simple state space time series model proposed for this data set is that of a random walk
with drift and observation error. In the following specification the units of measurement are
tenths.

0 = d+60;1 + w1+ vy, (1)
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Figure 2: Outside diameters measurements from 150 consecutive hubs

gy = O te (2)
where
§; = unobserved “true” diameter deviation from 15010 (target),
d = tool wear per hub (drift),
u;_1 = offset made just after hub ¢ — 1,
vy, V... ~ iid N(0,02),
y; = measured diameter deviation from 15010,

€1,62 ~ iid N(0,02)

and the v; sequence is independent of the ¢; sequence. For the purpose of estimation, the
model is viewed conditionally on y;=7.5. This is a useful initialization since (1) and (2) alone
do not define a joint distribution for a sequence of observations (y1, ...,y,). Different choices
for initializing the model have very little effect on parameter estimates.

Maximum likelihood estimates and approximate 95% confidence intervals (in parentheses)
based on the first 126 diameter measurements are

6c = 3.75, (3.02,4.65), 6, =3.10, (2.27,4.24), d = 0.84, (0.29,1.38).

The confidence intervals are based on the observed information matrix parameterized with
Ino,, Ino, and d. Harvey (1989) discusses estimation using the Kalman filter. The lower
four panels of Figure 3 present diagnostics for the state space model using the standardized
residuals. Sample ACF and PACF functions are shown along with a scatter plot and a normal
probability plot. The model fits reasonably well with respect to these diagnostics and for
further illustration it is assumed to be correct. It is particularly noteworthy that the parameter
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estimates are all on the same order of magnitude as the smallest possible adjustment of 1 tenth.
This suggests that adjustment discreteness may not be negligible.

2.3 Control Objective

Since it is desirable to operate the bar lathe so as to machine hubs with diameters close to
the nominal value, it seems reasonable to build an objective function including costs monotone
in |6;]. In addition, it should be recognized that fewer and smaller adjustments are generally
more desirable and hence it is reasonable to include costs monotone in |u;—_1|. For the metal
machining operation we consider modeling the total expected cost over a run of n hubs in
proportion to

© {iwz " mwt_n]} 3)

t=1
where
6(u) = 0, u=0
= 1, u#0.

Thus, run costs in period ¢ are modeled proportional to 6? and a fixed cost K, > 0 for a
nonzero adjustment. Control engineers would more typically use a factor u? ; in place of
6(us—1). However, (3) better models a situation in which minor adjustments are just as time
consuming and disruptive as are major adjustments. This is true, for example, when an
adjustment requires a fixed amount of process down time and labor as is the case for some
preventive maintenance procedures.

3 OPTIMAL DISCRETE CONTROL

This section draws on results derived in Sections 4 and 5 to present the optimal solution to
the bar lathe control problem for the case of no tool wear (ie, d = 0). Of course tool wear
is actually nonnegligible and hence the solution pertains to a problem simpler than the real
one. Jensen (1989) includes linear tool wear but assumes adjustments are continuous. The
case containing both tool wear and discrete adjustments is difficult to handle analytically and
is a topic for further research.

3.1 Deadband Scheme

Under the convenient initialization 6y ~ N(éo,qoo) where ¢, is given by (6), the system (1)
and (2) with d = 0 is (by Corollary 1) adjusted optimally with respect to the objective func-
tion (3) by setting
u—p = 0, if 61| < kp—ita
= <—ét_1>, otherwise

(4)
where <> is the integer nearest 6 and
ét—l = E{0;_1ly1, ... Yi-1 )

The constants k¢ depend only on K, and o2 (not ¢2). The conditional expectation #,_; can
be computed recursively using (7) below.
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Figure 4: Optimal deadband limits for various adjustment precisions

The optimal scheme makes no adjustment if the machine is perceived to be operating near
its target level (ie, if 6;_1 lies near 0). However, if f,_, is sufficiently far from 0, an adjustment
is made to offset the perceived misadjustment as nearly as possible within the constraints of the
the discrete manipulator variable u;_;. The constants k; are indexed in reverse order (that is k,,
is used in period ¢t = 1) because they are obtained through a recursion which first generates the
constant k; appropriate for period n. See Theorem 3 and Corollary 1. The optimal adjustment
strategy is very similar to that of Crowder (1991) for the case of continuous adjustments. In
his strategy the nonzero adjustment is simply —6,_1 and the constants k; take on different
values. He noted that the optimal control scheme is very similar to a traditional exponentially
weighted moving average chart used in statistical process monitoring.

If the smallest absolute tool adjustment were b tenths (as opposed to 1 tenth) then by
measuring in units of b tenths the problem can be transformed to the unit resolution case
discussed above. Figure 4 is a plot of the deadband limits k; against { for various levels
of adjustment resolution and n=10. Figures 4 through 6 use o, = 3.10 from the bar lathe
application along with K, = 100 and they are constructed so as to apply for any value of o..
The case b = 0 corresponds to Crowder’s (1991) continuous adjustment problem. The figure
shows generally that increased granularity in the adjustment variable leads to larger values of
k. That is, for more granular adjustments, one should perceive a larger deviation from target
before making an adjustment to the tool position. Interestingly the differences are greater
for longer horizons (that is, near the beginning of the run.) Also, as Crowder explained, the
limits fan out near the end of the run so that the estimated mean must be further from target
before making a costly adjustment that can have only short term impact. Furthermore, the
deadbands appear to converge to the left as the horizon length increases. See Theorem 6.
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3.2 Optimal Risk Functions

Using 6y ~ N(éo,qoo) is called steady state initialization. From standard Kalman filtering
theory (eg, Meinhold and Singpurwalla, 1983) or Bayes theorem, one obtains conditional dis-

tributions
i 1l(v1s -5 9o1) ~ N(Oi_1,000),
Htl(yh ey yt—l) ~ N(et—l + Ut—1, G0 + 03)7 and (5)
0:\(y1s- s yt-1) ~ N(Oio1 + w1, 02)
where

1 o2\Y? 1
2 _ _€ —

0y = poo(ét—l +ur—1) 4+ (1 — poo)yt, and (7)

O

Poo = ¥ oltal

That the conditional variances do not depend on ¢ is due to the initialization using ¢.,. More
generally, if 8y ~ N(6p, qo), the posterior variances approach their steady state values exponen-
tially fast.

An important sequence of functions in understanding the optimal adjustment strategy is
the sequence of optimal risk functions R,,(6p) giving the expected cost incurred in running the
process optimally for n periods with an initial mean 6y. That is,

R,(6p) = min E{iO?—}—Kaé(ut_l)}.

UQ,--sUn—1 =1

The minimization is over the functions u;—y mapping (v1, ..., ¥i—1, Yo, - - -, uz—2) to the integers
and the expectation is with respect to the (joint) distribution of (y1,...,¥n,01,...,6,).

Suppose the n—1 period problem is solved and Rn_l(éo) is known. The optimal adjustment
ug for the first period of an n period problem represents a tradeoff in the expected costs of
two alternatives. On the one hand, if no adjustment is made (ug = 0) the expected run cost
using (3) and (5) is

R, (fo|uo = 0) E{0? + R,_1(61)}

93 + oo + 0% + /Rn—1(él)h(é1; éo) dé,

where h(z;u) is the N(u,02) density. On the other hand if the adjustment uy = <—6y> is
made the expected run cost is

Ry(Bolug = <—6p>) = K.+ E{6?+ R,_1(61)}
Ko+ r2(f0) + qoo + 02 + /Rn_l(él)h(él; r(0)) dbs

where

T(éo) = éo + <—é0>
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is the (signed) distance to the integer nearest 5. The n period optimal risk R, (6p) is the
minimum of these expected costs

R, (6o) = min{R,,(Ao|uo = 0), Ry(fo|ug = <—6p>)}

and an optimal ug is correspondingly 0 or <—by>.

The three panels on the left of Figure 5 are plots of R,(fy) — R,(0) for n € {1,2,3}
and b € {0,1,3)}. They illustrate the shapes of the optimal risk functions. not depend on
The three center panels show more detail of the functions in the regions of transition. The
three panels on the right are plots of R,,(0) — np (where p = ¢, + 02) against n and show how
the level of the optimal risk increases as the horizon lengthens. Though the sequence R, (0)
depends on ¢Z, the sequence R, (0) — np does not (see Lemma 6) in the appendix.

Consider, for example, Rg(éo) — R(0) for b = 1 plotted in the left center panel. In the
neighborhood of by = 0, Rg(éo) = Rg(éo|u0 = 0) and the shape is dominated by the term ég
The interpretation of this is that if the process mean is perceived to be near its target value,
no adjustment is made and future costs are nearly quadratic in fo.

Far enough from éo = 0 the function Rg(éo) is wave-like — periodic in éo and roughly
quadratic on the intervals [¢ — 1/2, ¢+ 1/2] with local minima at the integers 7. This is because
far from 6y = 0, Rg(éo) = RQ(é0|U0 = <—éo>) and the shape is dominated by the term 'rQ(éo)
which has a quadratic wave shape. The wave can be understood intuitively by realizing that if
an integer adjustment is to be made, then starting with an estimated mean 6o is no different
(in terms of optimal expected cost) from starting at fo + 1 for any integer ¢. Furthermore, if bo
happens to be an integer, then the adjustment ug = <—0y> = —fy will return the estimated
mean to its target value and this is the best possible position. However, if fo is merely in the
neighborhood of an integer, the adjustment wg = <—6y> can only return the estimated mean
to the neighborhood of zero. Hence, the optimal expected cost should be roughly quadratic in
the neighborhood of integers (far from zero) with local minima at those integers. Furthermore,
for large || (and any n), R,(7) — R,,(0) = K, which is 100 in the example.

The two points of transition between the near-quadratic and wave portions of Rn(éo) are
the deadband limits +k,,. They are the break-even points between making no adjustment and
making an adjustment ug = <—fo>. By Theorem 7 the functions Rn(éo) — R, (0) converge uni-
formly as n — oo and this accounts for the convergence of the deadband limits k; (Theorem 6)
observed in Figure 4.

In Figure 5 an obvious difference in the shapes of the risk functions for b = 1 and b = 3
is that the period of the wave portions changes from 1 to 3. With continuous adjustments
(b =0) the “wave” is constant since then the estimated mean can be returned exactly to zero
regardless of fo. It is also apparent that the peaks of the b = 3 curves are higher than those of
the b = 1 curves. This is because with b = 3 the worst possible 8, (a large odd multiple of 1.5)
leaves the estimated mean (after adjustment) three times as far from zero as the corresponding
worst case with b = 1.

3.3 Effect of Horizon Length

There are also interesting features in the plots on the right side of Figure 5. The horizontal
axis indicates the number of periods n in the production run so it is expected that the total
cost would increase to the right as more periods are added. Although not perceptible, the
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Figure 6: Incremental risk functions for various adjustment precisions

curves rise faster as b increases. The convex shapes of the curves indicate that the marginal
cost of adding an extra period to the run increases with the length of the run. This makes
intuitive sense because longer horizon problems will likely have a larger fraction of periods
in which costly adjustments are made since these adjustments can have longer term impact.
However, one would expect this increase in incremental expected cost to eventually level off.
This would correspond to the curves approaching linear asymptotes as n increases.

Plotted against n in Figure 6 is the incremental risk defined as R, (0) — R,,—1(0) —p. These
curves give the slopes of those in the right panels of Figure 5. Both axes are on log scales.
For illustrative purposes the figure includes some relatively coarse values of the adjustment
precision b. The figure shows that relatively fine discrete adjustments increase expected costs
only slightly over the continuous adjustment case. But coarse adjustments increase expected
costs substantially for each period added to the production run. Also, the incremental risk
appears to converge as the horizon becomes longer (as conjectured in the preceding paragraph.)
The convergence is slower for coarser adjustment resolution (larger b) and very slow for very
large b. Another interesting feature is that the incremental risk sequences are nearly identical
and increase nearly linearly for problems with short horizons or very coarse adjustments. This
can be understood by realizing that in these cases the optimal policy will often make no
adjustment during a short production run begun on target. Thus costs will accrue almost
solely from squared deviations of the mean from the target value. For an unadjusted random
walk 0;, E{62} is linearly increasing in {.

3.4 General Comments Regarding Discrete Adjustments

Whereas the actual machining application described in Section 2 has deterministic drift due to
tool wear, this paper studies a no drift version of the discrete control problem. Nevertheless,
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the solution provides some justification for one’s intuition regarding optimal discrete control of
the drift model (1) and (2) with respect to the objective function (3). In particular, Figure 6
has shown (for d = 0) that the extra cost of discreteness is small if the adjustments are made
with high resolution. In this case the system can be adequately approximated as having a
continuous adjustment variable. It seems reasonable that this would also hold for the drift
version of the problem at least for small |d|. If incremental expected costs for the version with
drift are similar to those shown in Figure 6 the cost of discreteness at the level of tenths is not
severe for the hub machining application.

Crowder (1991) studied a continuous adjustment version of the machine control problem
without drift. The present strategy (4) is very close to a rounded version of his solution. The
only difference in addition to rounding the optimal adjustments is that the deadband limits
are somewhat different. Jensen (1989) studied a continuous adjustment version of the machine
control problem with drift. In this case the optimal adjustment strategy still has the deadband
form. However, the deadband region is shifted in the direction of —d and is thus no longer
symmetric about zero. Furthermore, the optimal nonzero adjustment becomes

— ) *
Uy = —0;_1 —d— Zp—t+1
_|_

where 2, ., has the sign of d. The optimal adjustment consists of (i) a term (—6;_1) to
correct for the perceived misadjustment, (ii) a term (—d) to compensate for the drift to occur
in period ¢ and (ili) an overcompensation term (-z;;_;,;) which anticipates the drift to occur
in future periods which transpire before the next adjustment. In the absence of a solution to
the full problem with discrete adjustments and drift, it seems that a reasonable strategy would
be to round Jensen’s drift adjustment solution, possibly using slightly wider deadband limits.
It would be interesting to compare this strategy to the (as yet unstudied) optimal one.

Finally, it is interesting that setting the fixed adjustment cost K, to zero reduces the
control objective to minimizing the sum of mean squared errors of #;. If the adjustment
variable is continuous, the well known optimal strategy is u;—1 = _ét—l- The solution in the
discrete adjustment case is simply the rounded version u;_1 = <—6;,_1>. A common objective
function in engineering control literature replaces the fixed adjustment cost K 6(us—1) in (3)
with a term K,u? ;. This is know as the linear quadratic Gaussian problem and penalizes
the magnitude (instead of the number) of adjustments. It is not generally true that rounding
the optimal continuous adjustment solution under this objective produces optimal discrete
adjustments. However, it seems reasonable that the increase in expected costs would not be
great, especially for high resolution adjustments.

4 DERIVATION

This section derives the optimal adjustment policy (4) under a cost model slightly more general
than (3). The steps are as follows. First, Theorem 1 gives important properties of the optimal
risk functions R, (#). These properties allow an explicit recursive equation for generating the
sequence R,(f). Theorem 2 gives a bound on |é0| not depending on n, beyond which it is
optimal to make the nonzero adjustment ug = <—bp>.

Theorem 3 provides a three term decomposition of R,(6). The sequence of remainder
functions in the decomposition is the negative part of a sequence ¢,,(#) which satisfies a simple
recursive equation. The sign of ¢, () determines whether the optimal adjustment wug is zero
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or <—fy>. If each gn(8) crosses zero only once in its positive domain, the optimal adjustment
strategy has the deadband form (4).

4.1 Problem Statement

Let process measurements y; evolve according to (1) and (2) with d = 0 and initial condition
Oy ~ N(éo, ¢so). The discrete adjustment problem is to determine adjustments u;—; € Z (2 is
the set of integers) based on (y1,...,y:1) and (ug,...,u;—2) so as to minimize the expected
run cost given by

L(n) = E {i[cowt) " Kaéwt_l)]} ®)

where K, > 0 and the off target cost function Cy(#) is assumed to satisfy

1. Cy(0) is nonnegative and symmetric about 8 = 0,
2. Co(8) < Co(0+1) for every 8 > —1/2,

3. lim g0 Co(#) = oo, and

4. [Co(z)d(2;0, oo + 02) du is finite for all 6,

where ¢(z;pu,0%) is the N(u,0?) density. The cost model (3) used in the lathe application
corresponds to Co() = 6. However, (8) allows other off target costs such as Co(6) = |af| or
Co(0) = agln(1 + |ab|) for ag > 0.

An apparently more general problem would allow adjustments to be integer multiples of
a constant b. However, by scaling to units of b, the problem can be expressed in terms of
integer adjustments. Further standardization is possible by noting that minimizing L(n) is no
different from minimizing a positive multiple of L(n). Thus, K, can be taken as 1 without
loss of generality. Deadband limits and optimal expected costs for the general problem can be
obtained using

ks (b7 ](ch(‘r)7UV) = bkt(L 1,(,70([).@)/}(&70'1,/()) and
R, (0;b,K,,Co(0),0,,0.) = K.R,(0/b;1,1,Co(bz)/K,,0,/b,0./b)
where the dependence of k; and R,(#) on b, K,, Cpy, 02 and o2 has been made explicit and

the conditions on Cy(#) are modified appropriately. The results below assume the problem has
been scaled to have integer adjustments.

4.2 Optimal Risk Functions

This section develops a recursive equation for the sequence of optimal risk functions R, (8) and
inductively establishes important properties of these functions.

The posterior distributions given in (5) imply that optimal adjustments u;—; depend on
the process history only through the posterior mean 6;_y = E{6;_1|y1,...,y:1—1}. Define
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Ro(6#) = 0. Using the dynamic programming principle of optimality, R,(6) can be written in
terms of R,,_1(#) (n > 1) as follows.

R,(0) = miy {/[Co(x)+li'a6(u)]qﬁ(x 04 w0+ guo) da
—I—/Rn_l(x) 0+ u,0 )dw}
= mm{mm [C(G—}—u)—l—ﬁa—l—/Rn 1(z)h(z; 04 u) dz| ;

CO)+ [ Rusoh )M} (9)
e 0):/Co(x) (2;6,02 + g0 da, (10)

and henceforth

h(w;0) = ¢(;6,07)

is the N(6,02) density. Some properties of C'(6) that follow from Lemma 2 in the appendix
and the assumed properties of Cy(#) are

1. C(#) is nonnegative and symmetric about § = 0,
2. C(0) < C(0+1) for every § > —1/2,

3. lim C(f) = o0, and

|| —co

4. C(8) is continuous in 6.

The following theorem gives properties of the optimal risk functions and makes the mini-
mization over v € Z in (9) explicit.

Theorem 1 For eachn > 1,

1. R,_1(0) is nonnegative, symmetric about & = 0 and such that R,_1(0) < R,—1(0+ 1)
for every 8 > —1/2.

2. An integer w minimizing C(0 + u) + Ko+ [ Rp_1(x)h(z;0 + u) de is u = <—0>.
3. R,(0) is given by
Ra(8) = min {C(r(&)) LK+ /Rn_l(x)h(ac; r(6)) de:

CO)+ [ Ruca(e)hla;0) da . (11)

4. It is optimal in an n-period problem is to take ug equal to <—by> or 0 according to
whether R, (6y) is equal to the first or second minimand in (11).
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Proof The proof of 1 and 2 is by induction. Consider the case n = 1. Then 1 holds since
Ro(6#) = 0. In 2 the quantity to be minimized over integers u is

C0+u)+ K,.
This is symmetric in g = 6 4+ u about the point g = 0 and for g > —1/2 satisfies
Cp)+ K, <C(p+1)+ K,.
Thus, Lemma 3 in the appendix implies

min{C(0 +u)+ K,} = C(r(0)) + K,.
ueZ

Since the integer u = <—6> gives 6 + u = (), this u is a minimizer.

Now suppose 1 and 2 hold for an (n — 1) period problem. It will be shown that they must
also hold for an n-period. By Lemma 2 in the appendix, the function

G = [ Rama(@)hes) da

is nonnegative, symmetric and such that G(u) < G(u+1) for every p > 1/2. These properties
also hold for C(p) + K, + G(u). Hence, Lemma 3 in the appendix implies

Cl0+u)+ K, + /Rn_l(x)h(x; 6+ u)dx
is minimized by the integer v = <—6> so that § + v = r(#). Therefore

T1;1;111 {C(G +u)+ K, + /Rn_l(af)h(x; 6+ u) dm} =C(r(0))+ K.+ G(r(8)). (12)

Since C', K, and G are nonnegative and symmetric functions then so is their sum. Furthermore,
since r(f) = r(#+ 1), the minimum (12) is trivially nondecreasing on any {6,6 + 1}. These
properties of (12), combined with equation (9), Lemma 4 in the appendix and the fact that

Co) + / Rov1(2)h(; 0) do

is nonnegative, symmetric about # = 0 and nondecreasing on {6,6 + 1} for every 8 > —1/2,
establish that R,(#) is nonnegative, symmetric about § = 0 and nondecreasing on {6,6 + 1}
for every 6 > —1/2.

Parts 3 and 4 follow from parts 1 and 2 by equation (9). a

The next theorem gives a bound on the magnitude of 6o outside of which an initial nonzero
adjustment is optimal regardless of the horizon length n.

Theorem 2 In an n period problem if |é0| exceeds
k=1inf{6 >0:C(z) - C(r(z)) > K,, Yz > 6},

it s optimal to take ug = <—éo>.
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Proof By Theorem 1 (parts 3 and 4) it must be shown that for 8 > k,
CO)—C(r(8)) — K, + /Rn_l(x)[h(m; 0) — h(z;r(0))] dz > 0. (13)

Clearly the sum of the first three terms is nonnegative for every # > k. By Theorem 1 (part
1) and Lemma 2 in the appendix
/Rn_l(x)h(x;ﬁ) dx

is nonnegative, symmetric and nondecreasing in 6 on {6,604+ 1} for every 8 > —1/2. Also,

/Rn_l(x)h(x; r(8)) da

has the same value for # and 6 4+ 1. Hence, for any 6 > —1/2

/Rn_l(x)[ 2:8) — h(z; 7(8))] de (14)

is nondecreasing on {r(6),r(8)+ 1,...,0}. But since (14) is a symmetric function of § and is
zero at r(#), it is nonnegative for any # € R. Therefore (13) holds for every 6 > k. O

The next theorem (proved in the appendix) provides a three term decomposition of R, ()
into (i) a constant multiple of n, (ii) a function periodic in #, and (iii) a remainder. The
remainder functions are the negative parts of a sequence g,,(#) which satisfies a simple recursive
equation. Also, the sign of gn(éo) determines whether the optimal adjustment ug is zero or
<—0p>.

Theorem 3 Let go(0) = vo(r(8)) = 0 and for n > 1 define recursively

gn(8) = [C(8) = C(r(8)) - Ka] + /g;_l(x)[h(w; 0) — h(z; r(9))] de (15)

and

0n(r(8)) = [C(r(8)) = CO) + [[ons(r(2) + g7y (2)]h(a; 7(6)) d
where g, (6) = min{0, g,(0)}.
Then for n > 1,
1. Ru(8) = nlC(0) + K]+ va(r(6)) + 97 (6),

2. gn(0) is continuous, symmelric about § = 0 and strictly increasing on {0,0 + 1}, V8 >
_1/2;

3. an optimal first period adjustment in an n period problem is lo lake ug lo be zero or
<—by> according as gn(Ho) s negative or nonnegative.

The following straightforward corollary shows that if each g¢,(6) crosses zero only once,
then optimal adjustments are nonzero only when |6;_1| exceeds a deadband limit.
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Corollary 1 Suppose the sets {|0] : g,.(|0]) = 0} are nonempty (possibly degenerate) intervals,
say, [krn, kvu,yl, and choose k, € (ki ., ku,). Then an optimal adjustment for period t (1 =
1,...,n) of an n period problem is

u—p = 0, ) if 10i—1] < kn—ipa
= <—0;_1>, otherwise.

Furthermore, the integral in (15) need only cover the range finite range [—k,_1, k1] contained
in [—k, k| where k is defined in Theorem 2.

The zero crossing condition is easily checked numerically and if it holds the limits &,, can be
obtained by straightforward numerical integration using, for example, a quadrature technique.
The condition has been found to hold throughout extensive computations over a wide range
of parameter values for the quadratic loss [Co(8) = 6?] version of (8).

5 LONG HORIZON CONVERGENCE

Section 4 studied the discrete adjustment problem with a focus on finite production runs. This
section considers whether the adjustment policy converges as the horizon length n increases.
In particular, convergence of the shifted optimal risk functions R,(6)— R, (0) is studied in two
stages. Write

Bn(0) = Ba(0) = [u(6) + wn(r(6))
where
n(0) = Ry(0) — Ry(r(0)), and
wa(r(0)) = Ru(r(6)) — £ (0).
Theorem 4 below shows that f,,(#) converges uniformly to a continuous function f(6). Conver-

gence of f,(6) implies (Theorem 5) convergence of the functions g,(#) defined in Theorem 3
and hence convergence of the optimal deadband limits &, (of Corollary 1) when they exist.

Convergence of f,(6) is thus quite useful. However, it may also be of interest to know when
R,(0) — R,(0) converges. Theorem 7 gives a sufficient condition for uniform convergence of
wy,(r(0)) and hence that of R,(6) — R,(0). It is conceivable that the condition always holds;
it has been verified numerically for o, > 0.19.

5.1 Recursion for f,(0)

The recursion (11) for R, (#) may be written as follows.

R, (0) = min{C(r(0))+ K, + E{R,—1(r(0) + 2)};
CO)+ E{R,1(04+ 2)}}, n=1,2,..., (16)

where the random variable Z is distributed as N(0, c2). Since

Ry (r(8)) = C(0) + E{Rp1(r(0) + 2)}
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it follows that
fu(0) = min{K,;C1(0) + E{R,—1(0 + Z) — R,—1(7(0)+ Z)}} (17)

where

C1(0) = C(8) — C(r(8)).

Since C'(#) is continuous, nonnegative, symmetric about zero and has limg_ __ C(8) = oo,
C1(0) also has these properties. Furthermore, C1(6) is zero on the interval [-1/2,1/2]. The
following two properties of the remainder function r(z) = & + <—z> are used in Section 5
without further reference: (i) r(r(z)) = r(z), and (ii) r(r(z) + y) = r(z + y).

Using property (ii) and the equality R, (0) = f,(0) + R,(r(#)) one may write
R0+ 2) ~ Ru(r(6) + 7) = [u(8+ 7) — fu(r(8) + 7).
Substituting this into (17) gives the recursion

Ju(8) = min{ K3 C1(8) + E{fua (6 + Z) = fuoa(r(8) + 2)}}. (18)

5.2 Convergence of Deadband Limits

This subsection proves uniform convergence of f,(#) (Theorem 4) and of g,(6) (Theorem 5)
and convergence of the deadband limits k,, (Theorem 6).

Bather’s (1963) Lemma 2 can be modified to prove

Lemma 1 The sequence f, is uniformly bounded. Furthermore, there is a large enough number

¢ such that f,(0) = K, whenever |8] > €.
The lemma is used to prove the following.

Theorem 4 The sequence f,(6) converges uniformly to a continuous function f(0) which
satisfies

J(6) = min{K,; C1(6) + E{f(0+ Z) - [(r(0) + Z)}}.

Proof The argument is a nontrivial extension of the argument leading to Theorem 1 in
Bather (1963). The difference f,41(6) — f,(6) is bounded as follows. If f,41(6) > f,.(#) then
by (18) Ko > fs1(8) > [(8); that is,

Ju(0) = C1(0) + E{fu1(0 + Z) = [ua(r(0) + 2)}.
Hence from (18),
0 < fug1(0) = fu(0) < E{fu(0+ Z) = [u(r(0) + Z) = fue1(0 + Z) + fu—a(r(0) + Z)}. (19)
On the other hand, if f,41(8) < f.(6) then by (18) Ky > f,(6) > fuy1(6); that is,
Jr41(0) = C1(0) + E{[(0 + Z) — [u(r(0) + 2)}.
Hence,

0> furr(0) = Ful(0) > E{ful0+ Z) = [u(r(6) + Z) = fucr(0+ Z) + fua(r(6) + Z)}. (20)
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Next define

F0w,m) = [far1(r(0) + @+ 1) = fu(r(8)) +w + 1))
~[frpr(r(@)) + 0 + 1) = ful(r(w)) + 0 + )]

and for fixed 8, w, and 7 denote the two bracketed expressions by ¢) and § respectively. Define

M, = sup |F,(0,w,n).

0w
By Lemma 1, each M,, is finite. It will be shown that ) M, < oco.
Suppose, for example, that F,(6,w,n) > 0 implying that @ > 5. Consider the three

possible relationships among @), S and zero.

Case 1: If Q > S > 0 then by (19)
F(b,w,m) <@ < E{fu(r(0)) +wtn+2) = fuoa(r(8) +w + 0+ Z)]
~[fu(r@) +w+n)+2) = fur(O) +w + ) + 2)]}
= /Fn_l(H, 0+w+mn,z—0)h(20)d=.

Case 2: If @ > 0 > 5 then by (19) and (20)

Fo(f,0,m) Q=5 < E{[fu(r(9) + w40+ 2) = fua(r(8) +w + 1+ 2)]
—[fu(r(@) +w )+ Z) = fulr(0) + @ + 1) + 2)]}
—[fn(r(@)+ 0+ 0+ 2) = fna(r(w)+ 0+ 0+ 2)]
Hn(r(@) +w+n)+ 2) = fu(r(0) +w+0)+ 2)]}

/Fn_l(g,w, n+ z)h(z;0) d=.

Case 3: If 0> @ > § then

Fafw,m) <=8 < E{-[fu(r(@))+0+n+Z) = fua(r(w)) + 0 + 0+ Z)]
[fn(r(@) +w+n)+ 2) = fulr(0) +w + 1) + 2)]}
Fo_1(0+w+1n,0,z—0)h(z0) d=.

[l
\Jr

On the other hand if F,(8,w,n) < 0 similar reasoning shows

Case 4: If S <@ <0 then —F,(0,w,n) < [F,1(0+w+1n,0,z—0)h(z2;0) d=.
Case 5: If § <0< @ then —F,(0,w,n) < [ F,_1(w,0,n+4 2)h(z;0) d=.
Case 6: If 0 < 5 < @ then —F,(0,w,n) < [ F_1(w,0+w+ 1,2 —w)h(z0) d=.
By Lemma 1, if neither 7(#) + w + 5 nor r(w) 4+ @ + n lies in (—¢,£) then F,(6,w,n) = 0.

On the other hand, if at least one of these quantities lies in (—¢,&) then in each of the six
cases the integrand of the bound for |F,(6,w,n)| vanishes either for all z < —(2£ + 1) or for
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all z > 2£ + 1. For the remaining values of z the integrand is bounded by M,,_1h(z;0). Define

p € (0,1) by
p=1—min {/_(2£+1) h(z;0) dz; /OO h(z;0) dz} :

—c0 26+1

We have shown for n = 1,2,...,

M, = sup |Fo(0,0,9)] < pMi_.

W,

This implies
Iwn S pnlMO

and hence )~ M,, < oo. By definition, fy(#) = 0= f,(r(6)). Hence,

Fi0) = 3 Jes(®) ~ Ju6) = 3 Fn(0,0,0)

which is the partial sum of a series which converges absolutely and uniformly in §. Thus define

f(8) = lim f.(6)

n—00
and since each f,(#) is continuous and the convergence is uniform, f(#) is also continuous.

It remains only to show that f(#) solves the functional equation. Given any € > 0 pick
n = n(e) so large that |f,,(6) — f(#)| < € for every m > n and for every 6. Then

17(6) — min{Ko,C1(0) + E{f(0+ Z) = f(r(8) + Z)}}]
< [f(8) = fara(8)]
+ min{ Ko, C1(0) + E{fn(0 + Z) — [u(r(0) + 2)}}
—min{K,, C1(0) + E{f(6+ Z2) - f(r(0) + Z)}}]

< 1f(0) = fraa(0)]
HE{fu(0+ 2Z) = [0+ Z) — fu(r(0) + Z) + f(r(8) + 2)}]
< 3e.

Theorem 5 The functions ¢,(0) defined in Theorem 3 converge uniformly to a function g(8)
which satisfies

9(8) =[C(0) - C(r(8)) - Ka] + /g‘(ﬂf)[h(x; 0) — h(z;1(0))] da.

Proof From Theorem 3 (part 1),
R(0) = n[C(0) + K] + vn(r(8)) + 9 ()

SO

Ju(0) = Ru(8) — Rn(r(8)) = 9, (8) — 9, ((8)) = 9, (6) — Ko (21)
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By Theorem 4, f,(#) converges uniformly to, say, f(#). Hence, g (6) converges uniformly to
v(0) = f(0) + K,. Define

9(8) = [C(8) — C(r(8)) — K.] +/ 0)[h(:8) — h(z; r(8))] d.
Then
5.8) =90 = | [l9z2(0) = 1@ )Aa:6) — i 1(8))] da
< suplg (e /|hx )= hia; (6))] da
< 2suplg,_q(2) — ()
—~ 0
That is, g(#) is the uniform limit of ¢,,(8). Hence v(z) = g~ (). m]

Theorem 6 Suppose for each n the set {|0] : ¢,(|8]) = 0} is a nonempty interval, say,
(kLn,kuy). Suppose further that {|6] : ¢(|0]) = 0} is a singleton, say, k* where g(0) =
lim, oo g,(0). Then [kr i, ku:] — k* and

k*
9(0) = [C(0) = C(r(6)) — Kal + [ 9(@)[(w;6) = h(w; 7(6))] d.

The proof is straightforward using properties of ¢,,(8) from Theorem 3 (part 2).

5.3 Convergence of Risk Functions

Theorem 4 provides uniform convergence of R, () — R,(7(#)). The interpretation of this is
that the shapes of the risk functions R, (6) stabilize for large n uniformly on any set of shifted
integers {z 4+ r :z € Z}, r € [-1/2,1/2] and the convergence is uniform over all such sets.
Under an additional condition, the following theorem guarantees the uniform convergence of
R,(0) — R,(0) and yields the interpretation that the shapes of R, () stabilize uniformly over
the whole real line.

Theorem 7 Suppose for some posilive integer m

max I™(s) <1
ls|<1/2

where

~
—~~

»
p——

Il

1/2
[ 1at.9)] da.
—1/2

~
3
—
»
SN
[l

1/2
[ @iQ(e. ) de,
—1/2
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Jorn =2.3,..., and where

Q,s)= 3 h(z + i) bz + 5;0).

i=—o0

Then the functions w,(s) = R,(s) — R,(0) converge uniformly to a continuous function on the
interval [—1/2,1/2] and hence R, (6) — R, (0) converges uniformly to a continuous function on
the whole real line.

Proof By equation (16), for s € [-1/2,1/2]
wp(s) = C(s) = C(0)+ E{Ru_1(s+ Z) — Ru_1(2)}.
But
Ro( + 2) ~ Rucr(2) = ar(54 2) — Fua(2) + s (r(s 1 2)) — wr ((2)).

Hence,

C(5) ~ CO) 4 ELfu(s 4 7)— fa(2))
HE{wn1(r(s + 2)) — wpa(r(2))}
= C(s)=C(0)+ L1 fr-1(5) + Lowy_1(5) (22)

wn ()

where £1 and L, are linear operators defined by

Lim(s) /m(m)[h(w; s)— h(z;0)] dz, and

Lom(s) /m(x)@(x,s) dz.

Repeated substitution for w,_1(s) in (22) results in
n—1 )
wn(s) = Y L5[C(s) = C(0) + L1 fro1-i(s)]
=0

where the term L3wg(s) has been omitted because wg(s) = 0. Using the limit f(#) from
Theorem 4, this may be written as

n(s) = 3 B3IC() = CO+ L] + 3 L faoa-ils) — S5

It will be shown that the first summation converges uniformly to a continuous function on
[-1/2,1/2] and the second converges uniformly to zero.

Following the argument of Crowder (1986, Proposition 4.2) for the first summation, let

a = |S§|r;e;>/<2[0(8) = C(0)+ L1 f(s)],

— 1 m—1
b = |S|Ir£)/(2max{1,f (s),...,I™ " (s)}, and
po = max I™(s)€(0,1).

Is|<1/2
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Then on [—1/2,1/2],
5[0 (s) - C(0) + L1 /()] < abph ™

for i = 0,1,..., where [z] is the greatest integer not exceeding z. Thus the terms of

ZL” [C(s) = C(0) + L1 f(s)] (23)

are uniformly bounded by the terms of the convergent series

> apli!™

=0
which assures the uniform absolute convergence of (23) on [—1/2,1/2]. Since each of the terms
is continuous and the convergence is uniform, the limit is continuous.

Next consider the sum »
> L5La(fumai(s) = f())].
1=0

0,1)

Using the quantities F,,, p € (0,1) and My from the proof of Theorem 4,

| frn(s) — f(s)] = Z F,.(0,s,0) Z p" My = p"M*
m=n+1 m=n+1

where M* = pMy/(1 — p). Thus,

3 foaoas) = SN = | [ Uncaoste) = F@)ha:5) = s 0] da| < g7~
where
M = M*p~! |S|r£§¥/2/|h (2;0)| da.
This implies
J— 0
spepln — Dml+li/m]

pl_lﬂrl**b [n/’]’n]

L5[L1(frm1-i(s) = [(5))]

VAN VAN

IN

where p; = max{p, po} € (0,1). Thus,
S [n/m]
D LEL(famami(s) = ()| < (p7 ' M™*b)mpy
=0
and since npgn/m] — 0 as n — oo, the series converges absolutely and uniformly to zero.

It has been shown that w,(s) converges uniformly to a continuous function on [—1/2,1/2].
Since
R (0) = Rn(0) = fn(0) + wn(r(0)),
Theorem 4 implies the functions R, () — R,(0) converge uniformly to a continuous function
on the whole real line. O

The condition of Theorem 7 was checked numerically and found to hold at m = 1 for
o, > 0.22 and at m = 2 for o, > 0.19.
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6 SUMMARY AND RELEVANT LITERATURE

This paper has studied an optimal discrete adjustment problem motivated by a machining
operation in the production of metal hubs. Successive hub diameters are modeled using a
random walk with observation error and linear drift (corresponding to tool wear.) The tool’s
cutting depth is adjustable by multiples of 0.0001 inch and the problem is to determine the
timing and size of adjustments. An adjustment strategy is sought to minimize expected run
costs proportional to the sum of squared deviations of the hub diameters from target plus fixed
costs for nonzero adjustments.

Under a simplified model omitting linear drift, optimal adjustments u;_; have the form

-1 = 0, if [0;_1| < kn—tga
= <—6;_1>, otherwise.

where 6,_; is a Kalman filter estimate of the process mean in period { — 1 and <@> is the
integer nearest . The deadband limits k; depend on the parameters in the probability and
cost models. Plots of k,_¢+1 versus ¢ for various levels of adjustment resolution show that
kn—¢4+1 increases near the end of the run so that one is less apt to make a costly adjustment.
Section 5 proved that the limits k,_;+1 converge as the run length n increases.

Plots of expected run costs versus the prior mean estimate 6y are useful for understanding
the effect of adjustment discreteness and the trade off between expected off target costs and
adjustment costs. Such plots show that coarse adjustment resolution can dramatically increase
expected run costs. In Section 5 the shape of the optimal expected cost functions was shown to
converge. Plots of expected costs verses run length show that the incremental expected cost of
including an additional period in the run is increasing but appears to converge as the horizon
becomes longer.

Using the squared error plus fixed adjustment cost model Box and Jenkins (1963) studied
an adjustable integrated moving average process having the same covariance structure as the
random walk with observation error (and no drift.) Assuming continuous adjustments and an
infinite production horizon they gave an approximation to the limiting deadband constant k.

Bather (1963) studied a similar problem phrased in terms of optimal timing of machine
overhauls under a random walk model with observation error (and no drift.) Although he used
a rather general cost criterion, he also required (a priori) the value of a nonzero adjustment to
be the negative of the estimated process mean. Under the squared error plus fixed adjustment
cost model, Crowder (1986, 1991) showed that negating the estimated mean is the optimal
nonzero (continuous) adjustment. Crowder’s focus was on short production runs whereas
Bather (1963) and Box and Jenkins (1963) emphasized the limiting long run problem.

Jensen (1989) incorporated linear drift and adjustment error into the probability model
assuming continuous adjustments. Including a deterministic drift of d per period, shifts the
deadband region [formerly (—k;, k¢)] in the direction of —d so it is no longer symmetric about
0. The optimal nonzero adjustment in this case has the form

_ _p x
Uiy = ~Byy —d — 2y
_I_

where —;_; corrects for the estimated misadjustment, —d corrects for drift in the next period,
and —z;_,,, overcompensates in anticipation of drift which will occur in future periods before
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the next adjustment. Additive adjustment errors have the effect of widening the deadband
region so that even without an explicit adjustment cost (i.e., even if K, = 0) the optimal
strategy makes no adjustment when the estimated mean is near target. In this sense the
implicit cost of adding variability to the system through adjustment errors is recognized.

Kramer (1989) studied a model including costs for sampling and derived optimal sampling
intervals and adjustment policies. Taguchi (1986) studied a similar problem.

An important feature of optimal adjustment problems with fixed adjustment costs is that
they generally result in strategies having a deadband form wherein the process is not adjusted
until a need is clearly demonstrated. This is consistent with the quality improvement philos-
ophy which enjoins one to take corrective action only when a statistical monitor signals that
a process is no longer operating in “control.” In this paper and those cited above, deadband
limits were derived to minimize run costs under particular probability and cost models. In
contrast, “3 sigma” limits on Shewhart monitoring charts are derived to give small false alarm
probabilities.

Although optimal fixed cost adjustment policies may appear to be similar to traditional
Shewhart charts, it should be emphasized that they have two very different purposes. An
adjustment policy is intended to regulate a process optimally. Shewhart charts were developed
to to detect and allow the removal of special causes of variation not included in the nominal
probability model for a process. Tucker, Faltin and Vander Wiel (1991) recommend using mon-
itoring schemes in conjunction with feedback and feedforward adjustment policies. Combining
the strengths of both methodologies allows for both short term process optimization and long
term process improvement.
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8 APPENDIX

Following are Lemmas 2 through 4 used in Section 3.

Lemma 2 Let Z be a random variable with densily ¢(z) symmetric about z = 0 and nonin-
creasing in |z|. Let H(z) be a nonnegative function symmetric about z = 0 such that

H(z)<H(z+1)
for every z > —1/2. Then the function
G(p) = E{H(p+ 2)}
s nonnegalive, symmetric about p = 0 and such that
G(p) <Gp+1)

Jor every p > —1/2. If in addition lim|, ., H(z) = oo and ¢(z) is strictly decreasing in |z|,
then G(p) < G(p+ 1) for every p > —1/2.

Proof G(u)is nonnegative since it is the expectation of the nonnegative random variable
H(p+ Z). G(p) is symmetric about p = 0 since

Gy = [T )+ H - 2)o(z) d

- /OOO[H(—M —z)+ H(-p+ 2)|¢(z) dz
G(=p)-

To show that G(u) < G(p + 1) for every p > —1/2 define the distance function
d(z) = |z — <z>|

where <z> is the nearest integer function. d(z) is the (positive) distance to the integer nearest
z. The random variable d(y + Z) has a density (over 6 € [0,1/2])

e = Y #=)

z:d(,u—l—z):(s

Y oz —p).

z:d(z):(S

It is straightforward to show that f,11(6) = f,(¢). Conditioning on the random variable
d(p+ Z) allows one to write

Glp) = /OOOP[H(M—l-Z)>h]dh

/ooo 01/2{1 — PH(p+ Z) < hld(p+ Z) = 6]} fu.(8) db dh. (24)
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For fixed 6 € [0,1/2] and h > 0 define
p(p) = PH(p+ Z) < hldp+ 2) = 617,(6)

Soodlw—p) ) D dla—p)| fu6)

zeAsp, z€As 00

>, oz —p) (25)

zeA&h

where for 0 < h < oo, Asp = {z :d(z) =6, H(z) < h}.

The sets Asj have different forms depending on the ordering of h, H(6),lim;_., H(i+ 6)
and lim; ., H (¢ + ¢). However, in each case one can demonstrate that p(p) > p(p + 1) for
every p > —1/2. Thus

Ju(6) = p(p) < fu(é) = plp+ 1) = fuy1(6) — p(pe+ 1).

But f,(6) — p(u) is the integrand in (24) and hence G(p) < G(p + 1) for every pp > —1/2. The
last assertion is proved similarly. a

Lemma 3 Lel H(z) be a function symmetric about z = 0 and such that
H(z)< H(z+1)
for every z > —1/2. If r is an element of [-1/2,1/2] and
Zr)y={j+r:j=0,£1,£2,..}
then

min H(z)= H(r).

Proof The lemma follows from the inequalities
H(r)<HA+r)<H2+7r)<---

and

H(r)y=<H(-147r)<H(-2+r)<---.

Lemma 4 Let F(z) and H(z) be nonnegalive functions symmetric about z = 0 and nonde-
creasing on {z,z+ 1} for every z > —1/2. Then min{F(z); H(z)} has these same properties.

The proof of Theorem 3 uses the following.

Lemma 5
[ bt ) = bt ) da =0

uniformly in p as § — 0 where h(z; ) is the N(u,c?) densily.
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Proof
[1htain) —h@ip+ o) de = [ 1h(e30) = ha58)| da
6/2
= ‘/_/[h(x;o ]d30+/ dx
= |®(8/(20,)) — ®(=8/(20,)) — ®(—6/(20,)) + ®(6/(20,))|
= 2|9(6/(20,)) — ®(8/(20,))|
—- 0
where ® is the standard normal cumulative distribution function. a

Proof of Theorem 3: First 1 is shown by induction. From (11) and the definitions of
¢1(0) and v1(7(0)) it follows that

min{C(r(0)) + K,;C(0)}
[C(0) + K] +[C(r(8)) = C(0)] + mini0, C(0) = C(r(8)) = Ko}
[C(0) + Ko] + 01(r(6)) + g1 (0)-

Suppose that for some n > 1

Rn1(0) = (n = D[C(0) + Ku] + vp1(r(0)) + 9,1 (0)-

R4(6)

Using this in (11) gives
R(0) = min{C(r(0)) + Ko+ (n = D[C(0) + K] + /[vn—l(T(w)) + g1 (@)]h(a; 7(8)) da;

C(0)+ (n—1)[C(0) + K] + /[vn—l(r(w)) + 91 (2)|h(2;0) da}
n[C(0) + K,]

—I—min{vn(r(t‘))) - K, + /vn 1(r(z)) + g,,_1(2)]h(z; 0) dx}
But
co) - Aa+/[@n (@) + gy (2)]h(; 0) de
= +/%1 D+ g7 (2)]hesr(6))
+C) - K+ [[na(r()) + g, (@) b(a:0) = h{ai (0))] da
= vp(r (9))+9n(0)
Hence,

R, (0) n[C(0) + Ko] + min{o,(r(0)); va(r(0)) + g.(6) }

n[C(0) + Ka] + vn(r(8)) + g, (9).

Next 2 is shown by induction. By the properties of C(8) following (10),

91(0) = C(8) - C(r(9)) - Ko
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is continuous, symmetric about § = 0 and strictly increasing on {6,6 + 1}, V8 > —1/2.

Suppose for some n > 1 that ¢,—1(8) is symmetric about § = 0 and strictly increasing on
{6,0+1},V0 > —1/2. Then g,_,(#) is symmetric and nondecreasing on {6, 60 + 1}. Therefore,
by Lemma 2 and since r(8) = r(6 + 1),

9a(0) = 010) + [ gy (@)(2:6) = h(ai (6))] da

is symmetric about # = 0 and strictly increasing on {6,604+ 1}, V8 > —1/2.

To show that ¢,(8) is continuous note from part 1

9n1(0) = 9,1 (r(0)) = Rn1(0) = Rya(r(0)) = fra(0).

In Lemma 1 of Section 5, f,,—1(#) is shown to be uniformly bounded. Furthermore, since g,,_1(8)
is continuous then ¢, ,(7(#)) is uniformly bounded and hence g, ,(6) = f.—1(0) + g,,_,(r(#))
is uniformly bounded by, say, M > 0. Next note that the symmetry of g,_1(6) implies

9a(0) = 010) + [ 4y (@)(a:0) = k(s |r(O)))] da
Therefore,

192(0) — gn(0+ €)] < [g1(0) — g1(0 + €|
+] [ g (@)ila30) — h(as6+ 0) da

[ s @it r(8)) — h(zi1r(6 + )] do

+

< 191(0) — g1(0 + €)|

+Z\1/|h(w;0) — h(z;0 + €)| dz

M [ (a3 [(8)]) = b3 (6 + €)])| do
—- 0

as € — 0 by Lemma 5 and since |r7(8)| and ¢;(#) are continuous.

Part 3 follows directly from Theorem 1 (part 4) since the sign of g,(6) corresponds to the
minimizer in (11). ]

The final lemma was mentioned in Section 3 but developmentally follows Theorem 3 just
proved.

Lemma 6 When Co(0) = 67 the sequence R,(0) — R,_1(0) — ¢o, is the same for every o?.

Proof From Theorem 3 (part 1)
Rr41(0) = Baf0) = 4o = [C(0) + Kol 4 0241(0) = 2n(0) = goo
= C0)+ K, + /[vn(r(x)) — vp_1(r(z)))h(z;0) dz

+ [1g7(@) = g2 ()h(2:0) de — g
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But, from the definition (10) of C'(8) it follows that
C(0)=60%4 0%+ qoo
where ¢, depends on ¢2 and o2. Hence,

Ro1(0) = Bal0) = o0 = 0F+ Kot [[0a(r(@)) = vama (@) JAl20) da

which does not depend on o? since neither g,(6) nor v,(r(6)) do. O



