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Abstract

Recent advances in computational capabilities often make engineering simula-
tions of lifetime tractable. We consider the case in which there exist lifetime
data from a computational model as well as data from a physical reliability ex-
periment. In addition, there may also exist one or more expert opinions about
the expected lifetime for selected factor settings. We simultaneously analyze the
combined data using a hierarchical Bayes model, In this integrated approach we

recognize important differences, such as possible biases, in these experimental
data and expert opinions.
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We illustrate the methodology by means of an examp|
signed and conducted an experiment to study the effect of three categorical design
parameters on ball bearing lifetime. In addition to the lifetime data from an
full factorial experiment, we assume the existence of computationally produced
lifetimes for four of the eight factor settings for the same three factors, We alsg
assume there are expert opinion data for seven of the eight factor sertings. The
integrated data are used to estimate the reliability functions for the eight factor

seitings. The results indicate that reliability is more precisely estimated by using
this integrated data approach.

Keywords:  Information integration, recursive Bayesian hicrarchical model, reliability func-
tion.

1.  Introduction

The purpose of a lifetime (or time-to-failure) reliability experiment is to
quantify the effect of one or more factors on the lifetime of some device of in-
terest. Recent advances in computational capabilities often make engineering
simulations of lifetime tractable. For example, degradation models are com-
monly used in which the corresponding lifetime is the random time before the
degradation reaches some critical threshold (or limiting) value. The primary
reason for using computational models is that they often offer lower cost/time
means to explore parameter effects than physical experiments. However, physi-
cal experimentation is often used as a means of validating computational results
while at the same time adding noise effects.

We assume here that there exists related computer experimental lifetime data
on the same, or a subset of the same, physical experimental factors. We can
often maximize return on development costs through the integrated analysis of
such hybrid experimental design data. It is also statistically efficient to fit a
single, integrated model that statistically expresses the effect that the factors of
interest have on lifetime.

The situation we consider is quite general in that we do not require that
we have computed (or measured) lifetimes at the same factor values in both
experiments. We only require that there exist some common set of factors
(either all or at least some) for both experiments. For example, it is sometimes
the case that a broad (or screening) computer experiment is first performed,

that is followed later by a physical reliability experiment in a smaller region of
particular interest of the overall computer experiment design space.

In addition, there may also exist one or more expert opinions regarding re-
liability. Traditional statistical approaches consider each of these sets of data
separately with corresponding separate analyses and results. A compelling ar-
gument can be made that better, more powerful statistical results can be obtained
if we simultaneously analyze the combined data using a recursive Bayesian hi-
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185

T a
n_a]} i Gf Computer and Fh}‘SICﬂl Experimel tal Llfe Time Dat
A 5L

il i the simultaneous analysis
i . As we will illustrate, -
e m'ethﬂg (t}:B}xi)ts the unknown factor eﬁ"ects_to_ be morle p;ez:fs; 3:
' g oposea pean RBHM for the integrated statistical ;n? f:éognizgs
i r - - a
esmnal?g{onwepgysical and computational experimental data
1 ’ ( | . -y
?crt i nt differences (such as biases) in these c_lata —— ki
e following example. In an experiment to 1mp! e i
Conmddae:dr m:ll?:e:ﬂng design inacertain application, Hellstrand [ma] s
oric
ofaSmnduct:d an experiment to study the effect of thret_teﬁnggme o
i on ball bearing lifetime. Based on past experi fll;s i
R t (Factor A), the outer ring osculation (the ratio 0 e
hezt ::i:g?;ls of the outer ring raceway) (Factor B), and tat;:: cage
e
3 vtvcre thought to have an effect on the performanc

d life of the bearlnig
i jven in Table 9.1,
this application. The experiment employed a 2° design, given In Tal
in this app :
where the two levels are st

andard (—) and modified (+) values, respectively.

i ifetime.
The response is the natural logarithm of the observed li
1 i Lifetimes
Table 9.1. Ball Bearing Physical Experimental Design Matrix and Li
i E log(liferime)
B
= . - 2.83
: + - - 3.26
¥ 322
+ P,
2 % 444
: ; ’ + 294
; - - 1 277
5 : + 3.04
g t ;: T 485
+

mputational model for predicting bcan;ti
three factors. However, We assumf Lhas
heat treatment (Factor A, + level) 1

utational model. Table 9.2 contains
for the computer

In addition, suppose _thcre is a co
lifetime that also contains 1_he san'_leu
the effect of the modified mnrﬁ‘l ring :

implemented in the comp! nod
1&:}1 gg;::;zn:ir?npg 92 design and associated log(lifetimes)
e

. i inions re-

C ch bearing designs was also available and‘ hf;d opl;;:, -
- ex‘ic e ;‘rfiez': of these three factors on lifetime were el;zzu ; ﬂ‘qe S
gaxd“,‘g ei:hf',r unwilling or unable to express her oplrmn\; s 0
- i fully modified bearing design; thus, only s i)
iy 0.3 gives her corresponding log(expect ;
) ifetime, and the equivalent worth,

hysical experimental result for the

ions were elicited. Tﬂb]E:
‘tlhc subjective 0.90 quantile, log(q),.onllht: 1
m. of each opinion relative to an equivalent p!




186 MATHEMATICAL RELIABILITY

Tuble 6.2, Ball Bearing Computer Experimental Design Matrix and Lifetimes

Factor

FRun A B c log(lifetime)
i 2 — 212

; - + - 307

3 2 = + 2.13

4 - + + 3.07

seven combinations that were elicited. Further discussion regarding these three
values is given in Reese et al. [10].

Tuble 9.3, Ball Bearing Expert Judgment Experimental Design Matrix and Lifetimes

Factor

Run A B c m log(expected lifetime) log(q)
1 = = - 05 251 258
2 + - = 0.75 283 3.05
3 = + - 0.5 276 3.29
4 + + = 0.3 417 4.38
5 = - o 0.3 237 2.43
6 + = + 1.0 2.59 2.66
7 - + 0.75 2.67 3.02

We present the basics of the RBHM in Section 2,and we :}pply it_ to the above
example in Section 3. Finally, we present our conclusions in Section 4.

2. The Basics of Data Integration Using RBHM

The design and analysis of computer experiments has evolved as the p =
of computers has grown (although it has certainly not kept pace!). Sacks t:t1 -
[11] provide a review of techniques used in the aqalysm of output fmm cc:ﬁ :3;
computer codes as well as issues for design. Latin hypercube sampling ha .
genesis in the design of computer experiments (h_icKay, Beckman, and_Conc:sv?S
[71). Bayesian treatment of design and analysis of computer experimen 5
presented in Currin et al. [1]. These papers are primarily concerned with lssuwr
when the only source of information is the output from a complex compy
model.

Data integration had its genesis in the meta analytic literature. chkha;i:;
[13] provides an early treatment of meta analysis. Hedges and Olkin (5] Prtobcen
a nice review of meta analytic techniques. However, meta analysis has no =
viewed without strong criticism (Shapiro [12] and discussion). Muller et al.

oWer
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present a Bayesian hierarchical modeling approach for combining case-control
and prospective studies, where effects due to different studies as well as different
centers are allowed.

The statistical notion of pooling data (sometimes also known as “borrowing
strength”) underlies the RBHM and analysis to be discussed. Modern methods
used 10 borrow strength have their basis in hierarchical Bayes modeling. A
nice introduction to both hierarchical Bayes modeling and borrowing strength
is given by Draper et al. [2]. The basic idea involves the notion that, when
information concerning some response of interest arises from several indepen-
dent, but not identical, data sources, a hierarchical model is often useful to
describe relationships involving the observed data and unobserved parameters
of interest. For example, unobserved parameters might be the coefficients and
error variance in an assumed regression model. Each source of data provides
perhaps biased information about these parameters, in which case methods that
borrow strength will be useful. The practical advantages of borrowing strength
for estimating the unknown parameters will be illustrated in Section 3.

‘We propose fitting lifetime models using information from three distinct
sources: expert opinion, computational, and physical experiments. The prob-
lem is difficult because the information sources are not necessarily all available
for the same set of design points. For example, physical experiments may be
performed according to a statistically designed experiment, while computer
runs may be made using a different design. In addition, expert opinions may
only be available at a very limited set of design points, such as the center of the
statistical design region. Our goal is to combine these sources of information
using an appropriately flexible integration methodology that considers (and au-
tomatically adjusts) for the uncertainties and possible biases in each of these
three data sources.

Reese et al. [10] describe the RBHM that we will use here to combine the
three sets of lifetime data given in Section 1. The physical experimental life-
times, y, are assumed to follow a standard lognormal linear regression model;
namely,

log(yp) = N(XpB,0°I), 9.1)

in which X, is a known model (or design) matrix, 3 is a vector of unknown
coefficients that must be estimated, and the subscript p denotes “physical ex-
periment.” We see that each physical lifetime is independent of the others and
has common variance ¢, which must also be estimated.

If physical experimental lifetimes were the only information source con-
sidered, this model would typically be fit using either standard least-squares
regression methods (Draper and Smith [3]) or standard Bayesian linear model
methods (Gelman et al. [4]. However, we want to incorporate information both

:Irtl)dm Shperts and computer experimental data to “improve” our estimates of 3
a
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Suppose also that there are e expert opinions, whjcl.m do not have to b«:fmen;
distinct experts. The it* expert opinion (i = 1, ..., €) is assumed to be elicit

at design point z;. Each expert opinion consists of the following information:

= the expected lifetime, Yo

= a subjective coverage probability on the physic_al lifetime yoi, ¥s, i.nd Ithc
quantile associated with that probability, gy; (i-e., P(yoi < gyi) = ¥i)-

In addition, we consider the elicited “worth” of the opinion in units of equiv-
alent physical experimental data observations, m‘(._;). In ord‘cr to use these d.a.ta,
we need to transform these individual pieces of information into probability
distributions that provide information about 3 and o2, Assume for thr:“monle,‘m
that the three quantities above can be used to create expert opinion “data” in
accordance with the following model:

log(yo) = N(XoB + 85,0750). 9.2)

As with the physical experimental lifetimes, the expert opimfm data )?ro are
assumed to follow a lognormal distribution. However,. the r_ne.au is now X o3+
8., where 8, is a vector of possible expert-specific IocauFm biases. The variances
are also biased, and the matrix X, contains the scale biases fqr ez}ch expert.

Besides location biases, in which an expert’s average valuc‘ is high or low I.El_
ative to the true mean, scale biases often occur due to information over-valuation
and are well-documented in the elicitation literatre. Eor cxamp!c, an cxg{n
may be asked to provide what they think is a 0.90 quantile but which mlre ﬁlo 1).:
is actually only a 0.60 quantile (Meyer and Booker [8]. SuF:h over-val uaE
of information may be expressed in the model as the scale blhE.S pa:a.r-::it::tcr ,,i
Although responses from experts can be correlated by having non-diagona
elements in X, we consider only the case of uncorrelated responses. Thus,

ke 0 --- 0

0 1/ks O
2= : 0
1] l}'kgg

Reese et al. [10] describe how the three expert-elicited quantities above (for
each expert opinion) can be described by the model given in (9.2). ifetime
Now consider an analogous model for the computationally-produced life

data; namely, 3

log(ye) = N(XcB + be, 0°Ze).

- - . : ta
In addition to possible location biases, computer experimental hfeuvn:i:;!e
are likely to have scale biases, as these data usually tend to be less
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than physical lifetime data; in fact, there is often no stochastic variability for
given values of the factors, as a computer code is often deterministic. The
variability occurs relative to the assumed model. Another reason for the reduced
variability relative to physical experimental lifetimes is that we know that not
all factors generating the physical lifetimes are incorporated into the computer
code—perhaps all of the factors causing variability are unknown. Although
we consider biases only in the intercept term of this model, more general bias
structures for the parameters can also be considered.

The RBHM provides a convenient way to sequentially integrate data, We
begin by assigning informative but diffuse priors on all the unknown model
parameters including the biases. These priors are then updated with the ex-
pert opinion data using Bayes theorem to form Stage 1 posterior distributions.
These Stage 1 posteriors are then likewise updated using the computationally-
produced lifetimes to form Stage 2 posteriors. At Stage 2, these posteriors
represent the combined use of only the expert opinion and computational data.
Finally, these posteriors become the priors for Stage 3 and these are again up-
dated using the physical experimental lifetimes to produce thé final posterior
distributions of interest. In this way, all the available data are recursively used
within the mode] context to successively (and more precisely) estimate the de-
sired effects. Although these calculations cannot be done in closed form, they
can be accomplished using Markov Chain Monte Carlo (MCMC) simulation.
Reese et al. [10] describes the details of these three steps and also provides
more general information on MCMC and the particular Metropolis-Hastings
algorithm used.

3. Ball Bearing Example

Hellstrand [6] describes a 22 experiment to improve the reliability of a stan-
dard ball bearing design. As stated in Section 1, the inner ring heat treatment
(Factor A), the outer ring osculation (Factor B), and the cage design (Factor C)
were thought to have an effect on the performance and life of the bearing in this
application. We analyzed the data from Tables 9.1-9.3 to illustrate the RBHM
framework described in Section 2.

In particular, the X3 terms in Equations 9.1-9.3 are parameterized with a
“grand mean” and linear treatment effects. The results are presented in Ta-
ble 9.4, This table contains the maximum likelihood estimates for the s and
o2, fit with only the physical experimental data (Table 9. 1), in the ML column.
The confidence intervals for the ML estimates are not presented as they are not

- directly comparable to the RBHM estimates. In particular, expert judgment is

used to develop an informative prior for %, as detailed in Reese et al. [10]. Ta-
513_9.4 also contains posterior means and 95% highest posterior density (HPD)
fegions for the physical experimental data and the combined experimental data
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(Tables 9.1-9.3). Notice that the HPD regions for the multiple data sources
combined using the RBHM are smaller than for the physical experimental data
alone. Figures 9.1 (a) and (b) illustrate the same change in precision by display-
ing the prior distribution and posterior distributions using physical experimental
and combined data for o2 and ;.

Table 9.4. Posterior Distributions for Physical and Combined Data

Physical Physical Combined Combined
Parameter Post. Mean 95% HPD Post. Mean 95% HPD ML
B 340 (3.03,3.81) 336 (3.05,3.65) 342
5 0.40 (0.035,0.78) 0.43 (0.15,0.74) 0.41
3= 0.46 (0.091,0.82) 0.50 (021,077 0.47
B -0.010 (-0.37,037 -0.027 (-0.31,0.27) -0.017
B85 0.34 (-0.070,0.74) 0.31 (0.0042, 0.59) 0.35
s 0.077 (-0.32,0.48) 0.062 (-0.20,0.33) -0.0016
s -0.00078 (-0.40,0.35) 0.0087 (-0.27,0.31) 0.076
at 030 (0.13,0.65) 0.22 (0.12,041) 0.17 .
(a) (b)
Figure 9.2 illustrates the prior and posterior distributions for 8,4, the location Flgure 9.1, Prior and Posterior Distributions for (a) o2 and (5) By

bias for the fourth computer observation. Although there is very little data
to estimate this parameter, by “borrowing strength” through the model, the
posterior mean (-0.14) has shifted left.

Figures 9.3 (a) and (b) are median reliability functions for the standard set-
tings and modified settings, respectivel y, with corresponding 95% HPD regions.
Notice for each plot that the probability bands are smaller when more data are
incorporated. Figure 9.4 plots the reliability functions using the combined data
for the standard and modified settings on the same scale. Forexample, the prob-
ability of the lifetime exceeding 80 hours with the standard settings is 0.0065,
with a 95% HPD of (0,0.062); with the modified settings is 0.68, with a 95%
HPD of (0.12,0.99).

4. Conclusions

We have presented an RBHM that can be used to combine expert opinions,
computationally-produced lifetimes, and physically observed lifetimes in an ex-
perimental design setting. Available expert opinion data are used to “sharpen”
the jnitial informative, but diffuse, prior distributions on the unknown coef-
ficients, biases, and prior parameters. The example results clearly show that
significantly more precise estimates of the factor effects and error variance can
be obtained using this method. In addition, the marginal posterior distributions
of the computer model biases can be used as diagnostic indicators for assessing
the validity of the computational model. That is, the more the location and scale

191
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Hours

Figure 9.4. Reliability Functions for the Combined Data

REFERENCES 193

bias posteriors overlap 0 and 1, respectively, the more valid the computational
model.

Information from more than three sets of such data can likewise easily be
combined by continued use of the RBHM, once for each data set. Finally,
biases that are not of particular interest can simply be marginalized; that is,
averaged out of the analysis using their respective prior distributions. Although
we have considered categorical factors here, the use of a linear regression model
permits more complicated mixed integrated models to be analyzed (see Reese
et al. [10]).
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