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A special section contains a collection of articles on how statisticians collaborate
with other scientists. Keller-McNulty, Wilson, and Wilson describe their experience
at the Los Alamos National Laboratory, followed by comments from Karr (NISS);
Landwehr, Mallows, and Tendick (Avaya Labs); Nair (U-Ml); Stufken (U-CA);
and Ghosh-Dattar and Paddock (RAND) who draw on their vast experience as
collaborating statisticians in industry or at national agencies such as NISS and

the NSF.

The Impact of Technology on the
Scientific Method

S. Keller-McNulty, A. G. Wilson, G. Wilson
Statistical Sciences Group, Los Alamos National Laboratory

D(:ing science” is more complex
today than ever. Yet, as scientists
move toward addressing more difficult
problems and realize the necessity to
address them in a multidisciplinary
fashion, efforts are complicated by
the ‘stovepiping’ of disciplines and
individuals expertise and the fact that
established scientific methods do not
lend themselves to many forms of mul-
tidisciplinary or team science.

By stovepiping, we mean that many
scientists today are only able to keep
current on a narrow slice of disciplinary
expertise. Due to the increase in the
number of journals and the amount of
research being conducted, it is getting
harder to be good at what they do and
have a general perspective on their
own disciplines, let alone science as a
whole. The scientific method we tradi-
tionally have relied upon was developed

centuries ago so that lone scientists
could convince other lone scientists
that their physical experiments were
conducted ‘objectively.” As part of this
ritual of objectivity, experiments were
simplified to the point that only one
idea was being considered and one
answer produced. Today, we often must
rely upon complex computer modeling
and symbolic experimentation because
physical experimentation is impracti-
cal or impossible; we must integrate
types of inlormation that once would
have been dismissed as subjective; and
we often must work in diverse teams
to address complicated, multifaceted,
ongoing problems in order to produce
cqually robust ‘answers.’

To address the demands of modern
multidisciplinary science, we are cager
to build upon the foundation of the sci-
entific method, seeking enhancements

The traditional scientific method can be represented as:

Identify a
Problem

Develop a

—

Hypothesis

to the scientific process both by notic-
ing the changes that have occurred in
scientific practices and by pushing to
develop methods that better fit the task
environments in which we work.

As suggested above, this method was
developed to isolate and minimize vari-
ables, to lacilitate simple description of
procedures for far-flung colleagues, and
to follow the principles of logic popular
during the scientific revolution. One
ol the key features of this model is its
linearity—once the process starts, it
needs to proceed to its conclusion and
produce a product in order to be seen
as successful.

R.A. Fisher noted that this linear
approach to science (and statistics) is
flawed.

No aphorism is more frequently

repeated in connection with field trials,
than that we must ask Nature few ques-

Conduct an
Experiment

—_—

Figure 1. The Scientific Method
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Figure 2. The Scientific Process

tions or, ideally, one question, at a time.
The writer is convinced that this view is
wholly mistaken. Nature, he suggests,
will best respond to a logical and care-
fully thought out questionnaire; indeed,
if we ask her a single question, she will
oflten refuse to answer until some other
topic has been discussed.

And while advanced experimental
design will continue to play an important
role in understanding complex prob-
lems, even the nature of experimen-
tal design must be rethought (see for
example Hamada et al.), and this alone
will not be enough to address all of the
challenges we face as researchers. If we
focus exclusively on the statistical issucs
involved in these problems we will miss
the “decision” aspects. We will fail to
capture the richness of the information
that pertains to the problem, and as a
result we will be trying to answer the
wrong questions.

Today, there is the ability and need
to conduct science in a way that
accounts for more complexity. One way
of addressing complexity is by incorpo-
rating cutting-edge mathematical and
statistical methodologies. Or perhaps,
in some manner, it is the other way
around: that the utilization of modern
mathematics and statistics, in synergy
with modern science, is creating an
exigency for more complex consid-

erations. Mathematics and statistics
have long been a part of the evolution
of the scientific process.

Copernicus was the first to success-
fully unite mathematics and science.
Before Copernicus, mathematics was
seen as an instrumentalist activity, deal-
ing with abstract constructs that had no
relation to real-world phenomena. His
1543 De Revolutionibus Orbiwm Cae-
lestim (which was actually based more
on calculations than observations) revo-
lutionized the practice of science, as did
later works by Galileo, des Cartes, and
Newton. Historian John Henry writes:

Mathematical practitioners
became important contributors to the
new trend towards experimentalism.
For one of the characterizing features of
the Scientific Revolution is the replace-
ment of sell-evident ‘experience, which
formed the basis of scholastic natural
philosophy with a notion of knowledge
demonstrated by experiments specifi-
cally designed for the purpose. Like a
mathematical proof, the end result of
the experiment might well be knowl-
edge, which is counter-intuitive.

Additionally, these early mathemati-
cal physicists were among the first
to incorporate instruments into their
research, establishing another founda-
tional component of modern experimen-
tal science.

Statistical and probabilistic theory
likewise coalesced in the 1600s. Tts lin-
eage draws from two areas: observations
of—and the desire to predict outcomes
of—games of chance and assessments
ol degrees of certainty (or in today’s lan-
guage, uncertainty) in judicial proceed-
ings (i.c., How likely is it that Mr. Jones
stole the pig?)(sec Hacking and Das-
ton). Scientists were interested in these
new methodologics that allowed them
to make calculations and draw con-
clusions about repeated observations
and populations, especially given their
new beliefls that the universe behaved
according to uniform laws and that
future phenomena could be predicted
based on assessments of statistical and
probabilistic caleulations.

In terms of technology, standard sci-
entific progress has followed a specific
process throughout the centuries (see
Figure 2). New ideas/theories or new
questions/problems lead rescarchers to
develop new methodologies in order to
address these issues. These methodolo-
gies hopefully lead to results that provide
answers and proof that lead to tougher
questions and the possibility of starting
the whole process over. New technology
can emerge [rom this process either as a
byproduct (a means) of methodological/
tool development or as a result/product
(an end). This can be secn in the story of
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= =
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Figure 3. An Alternate View of the Scientific Process

VOL. 18, NO. 4, 2005




Scientific Decision Objectives

Experience

- Expert Judgement
- Historical Data

Analysis
: 1 SErategy 7

Mathematical/Computer
Maodels

- Deterministic

- Stochastic

Information
Integration
Technology

Physical Data Collection
- Planned Experiments
- Observational

Multi-Disciplinary Perspectives on the Problem

Figure 4. Time-dependent Decisionmaking Framework

Copernicus, who had issues with Ptol-
emaic cosmology. He developed realist
mathematical methodologies to arrive
at a set of results, which then allowed
him and later rescarchers to ask tougher
questions and develop new theories.

But because we are looking at
increasingly complex problems, sci-
ence may need more than the method
of Figure 1 and the process of Figure
2. Science may need to build on the
foundation of Figure 1 to develop a new
process to address new types ol prob-
lems or to capture how our current way
of solving problems is different. In fact,
complex multidisciplinary science often
scems to be working in the opposite
direction from that indicated in T'igure
2. In our environment at Los Alamos
National Laboratory (LANL), technol-
ogy often drives the process (see Figure
3). Technology developed at, or made
available to, LANL (c.g., incredibly fast
supercomputers or the Metropolis algo-
rithm) creates an expectation of being
able to answer tougher questions. By
design, the technology comes to science
in search of questions. Once the ques-
tions are posed, science must search for
methodologics to answer those ques-
tions. And frequently, scientists find
themselves trying to figure out the theo-
retical meaning and importance of the
work they've done.

This process, depicted in Figure 3,
is less linear and more recursive than
traditional representations of the sci-

entific method in that the products
of the process can plug in at (update)
any stage in the diagram. The products
are not just an opportunity to start the
whole process over. This breakdown in
lockstep lincarity is one of the changes
we see in the process of the scientific
method. As aconcrete example, consider
Science Based Stockpile Stewardship
(SBSS) at LANL and the history that
has brought us to this problem. From its
carliest davs, LANI. has had a prominent
role in the development and evaluation
of the U.S. nuclear weapons stockpile,
but the end of the Cold War brought
significant changes to how this mission
could be carried out. There have been
significant reductions in the number of
weapons, leading to a smaller, ‘enduring
stockpile. The United States is no lon-
ger manufacturing new-design weapons,
and it is consolidating facilities across the
nuclear weapons complex. In 1992, the
United States declared a moratorium on
underground nuclear testing; in 1995,
the moratorium was extended and Presi-
dent Clinton decided to pursue a “zero
vield” Comprehensive Test Ban Treaty:
However, the basic mission remains
unchanged: LANL must evaluate their
weapons in the aging nuclear stockpile
and certify their safety, reliability, and
performance even though the kind of
data that has traditionally been used for
this evaluation is no longer available.

To complete this mission, a two-
pronged approach of experiments and

Inference

Decision Metric

computational modeling was adopted.
The experimental approach is exempli-
fied by the Dual-Axis Radiography lor
Hydrotesting (DARHT), the computa-
tional modeling effort by the Accelerated
Strategic Computing Initiative (ASCI).
At its core, however, this approach is
the same as the one that has been pur-
sued since the earliest days of the lab.
Symbolic experiments often have been
required when physical experiments
proved too difficult or dangerous. 'To do
these symbolic experiments, Los Alamos
implemented the first ‘computers’ dur-
ing World War II; the computers were
people, mostly the wives of scientists,
sitting in rows with adding machines
doing sequential calculations to model
complex physical processes. At a funda-
mental level, the new experimental and
computer technologies have not been
developed to address SBSS; rather a
“zero yield” policy could be negotiated
and implemented because advances in
computer technology made it seem fea-
sible that the sophisticated modeling
could be done to realize SBSS. In short,
the promise of the technology drove the
policy. It created an expectation that cer-
tain tough questions could be answered
with adequate justitication.

Alongside the efforts at experimenta-
tionand modeling, statisticians have been
working to integrate historical data and
to quantify the vast resources of expertise
at LANL in such a way as to lacilitate
their inclusion through Bavesian statis-
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tical methods. The challenge is to inte-
grate data, information, and knowledge
from the experiments, computational
models, past tests, subsystem tests, and
the expert judgment of subject-matter
experts to provide arigorous, quantitative
assessment—uwith associated uncertain-
ties—of the safety, reliability, and perfor-
mance ol the stockpile.

The complexities of big science
problems such as SBSS can quickly
become overwhelming, and without
careful attention to the whole picture
or purpose, the accomplishments of
individual scientists (following the tra-
ditional scientific method) can become
lost and detached. As some of the key
information integrators, we have gone
back to the ‘beginning’ recently and
reformulated our basic understanding
ol how decisionmaking under uncer-
tainty works and what its relationship
seems to be to the traditional scientific
method. This has led us to an under-
standing captured in Figure 4.

Recognizing that the overall problem/
goalis'decisionmaking’and not modeling
is a key point to emphasize here. LANL
is clearly in a peculiar position of doing
complex science that is closely tied to
national policy decisions. However, all
applied scicnce feeds into decisionmak-
ing scenarios: How much CO2 is too
much to be coming out of a tail pipe
or smoke stack? Does this microchip
design offer substantial improvement
over its predecessor? Ts this vaccine safe
and effective?

We refer to Figure 4 as a time-
dependent decisionmaking framework
because we know the type of data we are
concerned with will change throughout
time and we need to be able to update
that information within the framework
and then update the structure of the
components as need be. So, far from
being a static and linear method where
variables are purposely minimized, this
diagramrepresents a dynamic and recur-
sive space where each box has the poten-
tial to produce new information that can
update any other box, resulting in other
updates. The goal is that at any slice in
time, the best possible information is
available to guide decisionmaking.

The first piece of decisionmaking is
to define the decision objectives: What
is it that we are trying to understand and
decide? The second picce is to under-
stand the perspective that the multidis-
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ciplinary team members (or multiple
communities of practice) may have on
the problem. Within SBSS, the team
members and the communities they
represent understand the problem in
different ways: Physicists are interested
in the physical processes, weapons
designers are concerned with harnessing
physics, materials scientists think about
explosives and aging materials, engineers
are interested in parts, statisticians are
thinking about uncertainty quantifica-
tion, computer scientists contemplate
complex codes, and politicians are, of
course, concerned with matters of policy.
The third piece of decisionmaking is the
analysis strategy. Before any information
is collected, it must be determined how
this information will be analyzed and
integrated, and how the results should
bring better resolution to the decision
objectives. These determinations should
drive the requirements regarding what
data to collect. The fourth piece is data,
information, and knowledge. Today,
every decision incorporates more than
just ‘data’ in its narrow sense. It also
incorporates information and knowledge
to do such things as understand the
problem, structure the representations,
find data sources, and select appropriate
models. Even ‘data’in its narrower sense
can include such things as opinions elic-
ited from experts and outputs from com-
puter codes. The fifth piece of
decisionmaking is the “information inte-
gration” technology, or the statistical,
mathematically tractable, methodologies
needed to tie together all of the decision
objectives, community representations,
and data. If these technologies are effec-
tive, they lead to the sixth piece of deci-
sionmaking, which is inference (with
associated uncertaintics) about the deci-
sion objectives of interest. This inference
must be dynamic, or performed through-
out time, as the information about the
problem changes.

Implications

This article travels through several rep-
resentations of scientific method and
scientific processes. Much like in Figure
3, where scientists get to the last step and
try to make sense of their experience and
knowledge gained, we have noticed that
the way we have always been taught to
understand the scientific method doesn't
seem to explain the work we currently

do. Figure 4 is how we have tried to make
sense of, and give structure to, what we
believe the process is today. Does this
richer, more dynamic, representation of
the scientitic process have implications
beyond our personal experiences? We
believe it does and think it could help
researchers understand the connections
between science and decisionmaking
in a way that informs each. We need to
understand how the contributions scien-
tists make support decisionmaking at all
levels and how scientific methods fit into
those broader contexts. From a team sci-
ence perspective, Figure 4 emphasizes
the integration of multidisciplinary per-
spectives instead of forcing everyone into
a common representation, thus making
it possible to draw data and information
from a broader spectrum of expertise
without losing a little of cach communi-
ty's knowledge. Likewise, applying Fig-
ure 4 to a more loosely organized effort,
such as the international search for an
AIDS vaccine, can become a map that
allows cach participant to locate their
place in the big picture, to understand
how their efforts are contributing to the
whole, and even to recognize what parts
are not being addressed.

Finally, il we are right that the rules
are shifting in the game of science, all
of us who play that game had better pay
attention. The scientific method may
still be firm beneath our feet, but our
understanding of how it functions should
be as dynamic as our ongoing scarch for
understanding in the universe. (&
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Comment

Bonnie Ghosh-Dastidar
and Susan Paddock, RAND
Corporation

Statistics in Public Policy:
a Historical Perspective

Historically, statisticians have worked
closely with colleagues from other dis-
ciplines to help shape public policy.
When successful, the collaborations
have produced valuable results that
have led to important public policy
decisions. An early example of a suc-
cessful collaboration is the cooperation
between John Snow and London city
officials to find the origin of the cholera
epidemic in 1854. The prevalent theory
at the time was that, like all diseases,
cholera was spread through the inhala-
tion of contaminated vapors. However,

John Snow challenged that and worked

with the city officials to plot the loca-
tion of deaths due to cholera. In doing
50, he found that a large number of the
cholera deaths occurred in an area that
used the same water pump. Thus, John
Snow demonstrated that the cholera
germs were spread through water.
Another important collaboration
between statisticians, vaccine research-
ers, and public health officials resulted
in the largest and most expensive field
trial’ in U.S. history to demonstrate
the effectiveness of the Salk polio vac-
cine. It was thought that the unusually
large sample of about 400,000 chil-
dren was necessary because polio was
rare, its incidence varied widely from
place to place and vear to year, and

the effectiveness of the vaccine had
to be fully justified before general use.
Statisticians successfully argued to
the National Foundation for Infantile
Paralysis and the government for a true
controlled experiment using placebo
controls, double-blind procedures, and
careful randomization instead of a vital
statistics approach collected on regular
people or the observed control study
that was initially proposed as a less
expensive option. The experiment that
took place demonstrated sufficient evi-
dence to warrant the introduction of
the vaccine as a standard public health
procedure. Were just the observed con-
trol information available, considerable
doubt would have remained about the
proper interpretation of the results.

In both of these examples, inter-
action among statisticians and non-
statisticians was key to conducting
the research and reaching detinitive
answers. Snow could not have suc-
cesstully challenged the conventional
scientific wisdom without the coop-
eration of city officials to identity the
location of the cholera deaths, and
the receptivity of city officials to new
scientific ideas made it possible for
Snow to bring spatial analysis to bear
on answering a major public health
question. Similarly, the statisticians,
polio vaccine researchers, and the
paralysis foundation and other govern-
ment officials collaborated to ensure
the chosen study design and statistics
would produce unequivocal evidence
in support of a major change in public
health policy.

These examples of successtul col-
lahorations highlight the diversity ol
public policy rescarch. The initial sci-
entific questions under examination
differed: “What is causing X?” was the
focus of the cholera study, while the
polio vaccine study considered the
question, “Does Y reduce the occur-
rence of X?” The data sources avail-
able for these two studies differed;
one utilized retrospective observational
data while the other involved design-
ing a randomized controlled experi-
ment. The diversity of policy problems
and data sources necessitates that the
interactions of statisticians and non-
statisticians differ across projects.

Our fundamental experience is the
interactions statisticians have with
nonstatisticians are influenced by the

policy problem under investigation and
voals of the research project. Identily-
ing one template for interaction among
statisticians and nonstatisticians in
policy research will invariably fall short
of encapsulating the full range of inter-
actions possible. However, there are
some aspects common o all statisti-
cal public policy research that can be
gleancd from the above examples. We
will expand upon these aspects using
examples from our own research expe-
riences. The key message is that the
policy problem and goals of the project
will determine the set of persons with
whom the statistician will interact,
the nature of thosc interactions, and
what the statistician contributes to the
research project.

In the cholera example, data came
[rom a public database. The statistician
thus needed to communicate with eity
officials who provided the data in order
to gain an understanding of the data.
In contrast, the data collected prospec-
tively through the randomized con-
trolled polio vaccine trial required the
statistician to have extensive interac-
tion with the clinicians to understand
how large of a decrease in polio rate
would be needed to conclude the vac-
cine was cffective in a practical sense.
The statistician also had to interact
with the persons who were responsible
for enrolling subjects into the study to
understand the constraints involved
that might affect sample size (e.g.,
anticipated participation rates).

Given that the policy research goals
determine so much of the interaction
statisticians have with nonstatisti-
cians, we will first provide background
about our research environment at the
RAND Corporation and the goals of our
research in order for you to understand
the forces that drive our interaction
with nonstatistician colleagues. We will
then describe the collaborative research
process we undertook on two RAND
projects to illustrate the interactions we
have with nonstatisticians in our work.

Doing Statistics at RAND

The RAND Corporation is a nonprofit
institution that helps improve policy
and decisionmaking through rescarch
and analysis. For more than 50 years,
RAND has been conducting research on
critical social and economic issues, such
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as education, poverty, crime, health,
the environment, and national security.
RAND receives funding for research on
specilic topics from the government,
foundations, and private-sector clients.
The research is therefore very project-
focused. The size, scope, and goals of
public policy research projects vary
greatly, but the common element is that
they require multidisciplinary teams of
researchers to provide the necessary
expertise in order to answer the policy
questions at hand.

The diverse types of policies and
the varied context for research require
RAND employees to respond to a variety
of challenges. Some research involves
torward-looking development of pro-
grams (see the ALERT Plus example)
to meet the needs of the public; while
others are policy evaluations that must
be conducted over shorter time inter-
vals to answer timely policy questions
(see the Medicare example). The key to
interaction is to apply statistical insights
to formulate analytic approaches with
nonstatisticians who know the substan-
tive issues—and possibly the data—bet-
ter than RAND statisticians do.

Another key to successfully interact-
ing with nonstatisticians in the research
environment is to contribute wide-rang-
ing knowledge on a variety of statistical
and quantitative analytic approaches
and to be Hlexible enough to understand,
develop, and apply new methodology as
needed to solve public policy problems.
To illustrate the diversity of analytic
issues encountered in this work and the
need for maintaining a broad statistical
knowledge base, one of us specified a
complex survey design to study the qual-
ity of health care, performed statistical
power calculations for a grant proposal,
read about hidden Markov models and
assessed their potential uselulness in
exploring transitions in health states over
time and identified existing software
for such models, explored prior speci-
fication issues in hierarchical model-
ing, conducted longitudinal analysis of
growth curve data, evaluated the useful-
ness of potential instruments to model
selection bias into a treatment, and,
of course, conducted basic exploratory
analyses using two-way tables.

Given the ever-growing body of sta-
tistical methods available to address
policy problems suggested by this list
of research activitics, the RAND Sta-
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tistics Group provides short courses to
RBAND nonstatistician researchers as a
way to communicate about statistical
approaches and familiarize the research
stall with analytic approaches. These
short courses frequently foster further
interactions among the statisticians
and nonstatisticians; when one of us
taught a short course on missing data (a
favorite topic among RAND research-
ers), numerous statistical consulting
contacts ensued.

While statisticians at RAND inter-
act with nonstatisticians in a variety of
ways—through teaching short courses
and providing statistical consulta-
tion—the vast majority of time is spent
researching. Therefore, the focus is on
these interactions as illustrated below:

Examples of the Research
Process

Evaluating the effectiveness of a school-
based drug prevention program

This is an example of a project in which
one of the coauthors (Ghosh-Dastidar)
collaborated extensively. The project
was a field evaluation of ALERT Plus, a
school-based drug prevention curricu-
lum developed by RAND psychologists
to reduce drug use among adolescents.
The initial step consisted of bringing
together a team of psychologists, sur-
vey rescarchers, psychometricians, and
compuler programmers to write a grant
proposal to the National Institutes of
Health (NTH) for funding. Proposed
was a five-year longitudinal field experi-
ment to be conducted in South Dakota
schools. At this stage, the statistician
helped to develop the hypothesis to be
tested (the Specific Aims), designed
the study, and proposed analyses that
should be conducted. In this project,
the hypothesis was quite clear: We
needed to test whether students who
took ALERT Plus had lower drug use
(tobacco, alcohol, marijuana, and other
drugs) than those who did not. Thus, the
statisticians spent more time devising a
randomization plan.

Several considerations went into
making this decision, including geo-
graphic distance, school characteristics,
and case of implementation. Equally
important were discussions with other
team members, including the people on
the ground in South Dakota in designing

the randomization plan. Based on these
conversations, we decided entire schools
would be assigned to either the treat-
ment or control condition because of
the threat ol contamination if the same
school had both treatment and control
students—in other words, reduced drug
use among the treatment group could
influence the control group as the treat-
ment and control students interact out-
side of the classroom. Thus, we needed
to match the control schools to the treat-
ment schools carefully to make sure the
two groups were comparable.

All of these decisions entailed talk-
ing with the principal investigator (a
psychologist), and were made with input
from the survey group and educators in
South Dakota. We worked with the field
supervisors to make sure the schools
were randomized to receive the program
or not, as designed. 1f a school refused,
we had to find a substitute in real-time
and get back to the field. Once the ran-
domization was completed, it was time
to conduct the surveys.

The psychologists and survey
research team designed the survey
and printed up questionnaires. They
asked the statisticians to make sure
the survey questions and response
scales free of “wording bias™ and, ulti-
mately, appropriate for analysis. The
next major project effort was to admin-
ister and collect surveys annually for
five consecutive years. Each year, the
surveys were fielded with vast coop-
eration from the field stafl, schools,
and students. Once the questionnaires
were scanned into a computer, the
data files were sent to the statisticians
for analysis. Computer programmers
were asked to develop programs that
conducted checks for validity, errors,
and missing responses. They also
developed procedures to address these
issues. These steps helped ascertain
the quality of the data, as well as influ-
enced other decisions. For example,
the data checks showed the response
rate started to drop off al a certain
point in the survey, so that students
did not answer the last questions. This
was attributed to lack of time. Thus, in
the next year’s survey, the length of the
questionnaire was reduced.

Once the data were cleanced, they
were ready for different types of analy-
sis, such as analysis of the program
effect, mediational analysis, and struc-




tural equation modeling. Statisticians
and psychometricians con ducted these.
Meetings were held with the research
team to discuss the derivation ol out-
comes and analysis plans. For example,
how should cigarette use be measured?
What are the key predictors of drug
use? Finally, analysis was run to gen-
erate results. While the statistician's
responsibility was to explain the results
in a way everyone could understand,
the substantive experts interpreted the
results in the context of adolescents and
prevention. The data analysis process
was iterative with constant tweaking,
modifying the data and the outcomes,
and then rerunning the analysis. Results
from the carlier waves of the survey also
influenced the design of the survey and
data collection in subsequent years.
The final results were jointly written
up as manuscripts. The statistician
described the results as policy-relevant
quantities—Tor example, odds ratios
were converted to differences in per-
centages. Alter the project was com-
pleted, the findings were disseminated
through the media, mailed to the school
districts, posted on the RAND web site
for the general public, and presented at
conferences for a more critical techni-
cal audience.

Estimating Medicare payments for inpa-
tient rehabilitation

One of the first studies a coauthor
(Paddock) was involved with when she
came to BAND in 1999 was a proj-
cct funded by the Centers for Medi-
care and Medicaid Services (CMS).
CMS was congressionally mandated to
develop a new payment system for inpa-
tient rehabilitation care for Medicare
recipients and RAND helped CMS
design that system. The goal of the
study was formulated more as a policy
objective for which the research ques-
tions were largely specified by CMS
(i.e., How much should CMS5 pay
for inpatient rehabilitation care?) as
opposed to developing a hypothesis to
be tested. One of the tasks required to
calculate how much CMS should pay
for care was to estimate the national
base payment per patient that inpatient
rehabilitation facilities (1RFs) would
be paid for providing inpatient reha-
bilitation care to Medicare recipients.
The base payment would be multiplied
subsequently by factors that reflected

the patient’s severity as well as the
costliness of the hospital providing
the care, with these factors being esti-
mated in different components. The
major restriction on the base payment
was that it had to be such that the
anticipated expenditures for the first
year under the new payment system
would not exceed $4.3 billion. CMS
provided the best available data they
had that would enable the base pay-
ment to be estimated.

The main RAND collaborator on
this project was the RAND project
leader, a public policy researcher who
is a Medicare expert. Interaction was
mainlyin the form of regular conference
calls and email exchanges. In addition,
the entire RAND rescarch team had
weekly conference calls internally with
CMS, during which research progress
was discussed. The project funding
agency, CMS, played a significant role
in regular project interactions, as the
policy goal of the project—to support
CMS as it designed and developed a
new payment system—required close
communication about research plans,
data issues, findings, and deadlines.
The project leader and other project
participants brought important experi-
ence to the task, namely knowledge
about how payments were calculated
in previously implemented Medicare
payment systems and which factors
needed to be considered when estimat-
ing payment {e.g., need to account for
outlier payments, case mix adjustment,
cost differences among lacilities).

A key analytic issuc was that the
data sources posed a challenge for esti-
mating the baseline payment per case
that would apply to the universe of
inpaticnt rehabilitation cases: Therc
was a 65% nonrandom sample of the
universe of all inpatient rehabilitation
cases from administrative data. Prior
to the implementation of the new pay-
ment system, CMS did not have an
incentive to collect data elements on
patient case mix variables that were
key to determining payment under the
new system. Therefore, data collected
from facilities with this information
were used. The first statistical chal-
lenge was to assess the comparabil-
ity of the sample with the universe.
RAND colleagues who were Medicare
experts had suggestions as to what
were important factors on which to

judge the comparability of sample and
universe cases, such as the [eatures
of facilities (freestanding versus units
housed in acute care facilities, pro-
prietary versus other facilities) and of
cases (demographic characteristics).

Once it was understood how the
sample and universe ditfered, various
statistical strategies for computing the
base payment were identified. One
approach would have been to use only
the available data; however, this could
have led to a biased estimate, so various
methods to impute data for the 35% of
nonrandomly missing cases were pro-
posed. Before pursuing this analytical
strategy, input from project collabora-
tors as to which predictor variables
are reasonable candidates to consider
for imputing missing data, consider-
ing the literature and prior research
experience, were needed. Finally, solu-
tions and approaches to CMS and the
project’s Technical Expert Panel were
obtained, which consisted of a vari-
ety of stakeholders in the inpatient
rehabilitation field, such as therapists,
health services researchers, physicians,
and inpatient facility administrators.
First, the need to consider a range of
analytic approaches to cstimate the
base payment was motivated—in par-
ticular, explaining the nature of the
nonrandom data sample. Then, several
methods to estimate the base payment
were proposed and it was confirmed
that the recommended method was
accepted and understood by the inpa-
tient rchabilitation field.

The importance of clearly pre-
senting findings to a broad group of
stakeholders motivated work with a
communications expert at RAND to
prepare briefings. The communica-
tions expert helped explain and present
complicated statistical methods, such
as crossvalidation and imputation,
and the results in a simple and com-
prehensible way. “Dry run” brielings
were performed with all research team
members present so everyone could
contribute to helping present findings
more clearly. At this point, research on
this task was largely complete. RAND
wrote its reports on the findings and
made those available to the public.
CMS synthesized the findings with its
own policy recommendations in order
to propose to the public the structure
of the new payment system. CMS also

caance 11




published a “Notice of Proposed Rule-
making” in the Federal Register, which
detailed its proposal for a new pay-
ment system. The public was given 90
days to respond to this rule, and CMS
considered the public’s comments and
suggestions before specifying the [inal
design of the payment system.

Conclusions

The two examples illustrate the variety
in public policy rescarch projects at
RAND. Statisticians often are involved
in many research projects that involve
both primary and secondary data analy-
sis, diverse policy objectives, and sets
of stakcholders. The policy goals of the
projects ultimately determine the type
and level of interaction statisticians will
have with nonstatisticians. While the
exact nature of the interaction depends
on the project, projects generally
involve a great deal of cooperation and
interaction among researchers from
different disciplines. This exchange of
knowledge results in each individual
developing into an interdisciplinary
rescarcher. Over time, both parties
expanded their roles on the respec-
tive projects mentioned above beyond
strictly being the statistician to taking
responsibility for leading the research
effort (i.e., being the [irst author on
reports and papers) and developed an
understanding of the complex policy
issues being investigated.

Thus, how statisticians interact with
nonstatisticians also is determined by
factors such as the statistician’s exper-
tise in the policy research area at hand
(e.g., Will the statistician participate
fully in the conceptualization of the
policy problem?) and the statistical
sophistication of nonstatistician col-
leagues (e.g., How much effort does
the statistician need to put forth in
communicating the analytical results
to colleagues, or will collcagues have
their own suggestions about quantita-
tive approaches to data analysis?). In
short, statisticians at RAND partici-
pale as proactive investigators in the
collaborative process ol public policy
and decisionmaking. (&
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Comment

James M. Landwehr, Colin L.
Mallows, and Patrick Tendick,
Data Analysis Research
Department, Avaya Labs, Basking
Ridge, New Jersey

The authors offer some interesting per-
spectives on changes in the scientific
method that have resulted from—or at
least paralleled—changes in technology
and the nature and scope of scientific
problems now being addressed. The
paper’s context is primarily that of “hig
science” as practiced by large, multidis-
ciplinary teams at national laboratories
and elsewhere. The authors make no
specific mention of industrial research
and development, which is where our
own experiences lie. We find many
similarities between points made in the
article and the current environment for
industrial R&D, and we offer our com-
ments on several of the relationships.
More specifically, our comments reflect
our experiences in telecommunications
R&D): collectively, we have worked at
Bell Labs, AT&T Labs, Bellcore, Telcor-
dia, and Avaya Labs.

In the first paragraph, the authors
reler to “multidisciplinary or team sci-
ence.” While in industrial R&D the

decisionmakers are company execu-
tives—whose motivation is primarily
not to advance scientific understand-
ing, but rather to exploit it for the bene-
fit of the customers, shareholders, and
employees of the company—we find
that much of what the authors say is
directly relevant to industrial R&D. For
example, most projects involve small
to large teams, rather than a single
individual. One consequence is that
factors associated with a team being
successful, such as planning, coor-
dination, and cooperation, can be as
important as individual characteristics,
such as technical brilliance (though
that never hurts, either.)

In contrast to current large team
projects, consider the invention of the
integrated circuit by Jack S. Kilby of
Texas Instruments, which occurred
approximately 50 years ago and is
clearly one of the most successful out-
puts in history from industrial R&D.
In Kilby’s obituary, The New York Times
reports, "He arrived at Texas Instru-
ments in 1958 and during his lirst
summer, working with borrowed equip-
ment, improvised a working integrated
circuit. A successtul laboratory demon-
stration of the first simple microchip
took place on Sept. 12, 1958.” While
it may still be the case—and we hope it
is—that individual scientists and engi-
neers are coming up with inventions
that will have comparable impact in
years ahead, progress today in existing
fields, such as integrated circuit design
and manufacturing, results primarily
from the achievements of small to large
multidisciplinary teams. Today, large
projects are important for industrial
R&D as well as in government-spon-
sored “big science,” so having useful
scientific methodologies for framing
the progress and activities of large proj-
ects arc important.

The authors state that in their envi-
ronment, “technology often drives the
process (Figure 3). This statement is
also true for industry, though goals
of the process in industry can be dif-
ferent: developing new products or
services that are enabled by the latest
technology. The authors go on to say
that a “breakdown in lockstep linear-
ity is one of the changes we see in
the process of the scientific method.”
Additional factors not mentioned in
the article, but which contribute in




industry, are competitors activities,
customer preferences, and market
changes. All contribute to a nonlinear
process that can start over from time
to time or change at any stage.

In their discussion of Science-based
Stockpile Stewardship, the authors con-
clude that “in short, the promise of
the technology drove the policy.” In
industrial R&D, similar situations can
occur in which the promise or vision of
the new technology, rather than its real-
ity, drives the process. This can occur
especially around the development of
‘truly new’ product, as compared with
development aimed at incremental
changes and feature additions to exist-
ing product. When market successis the
goal rather than science, an additional
important factor is the timing of the
results achieved, as success depends on
meeting market opportunities in addi-
tion to technical success.

Turning to the authors Figure 4
and its depiction of current reality,
we remark that this figure also applies
to industrial R&D with the top box
relabeled as “Business Decision Objec-
tives,” rather than “Scientific Decision
Objectives.” The environment within
which a large modern company must
operate is extremely complex; there
may be governmental regulation, mul-
tinational issues, and the continual
pressure from competition. This makes
it difficult to perform quality scien-
tific work. Sometimes an unusually
enlightened company (such as AL&T's
Bell Labs in its heyday) can afford the
luxury of supporting basic research,
beyond supporting the more typical
product development R&D that is the
context for most of our remarks, but
this is not a common paradigm.

For industrial R&D, the range ol
these “Business Decision Objectives
is broad. It encompasses much of what
could be called “policy” in a corporate
sense, and formulating such policies
has some relationship with the sci-
entific process described in the arti-
cle. For example, an initial corporate
decision is should a new product or
service be developed and brought to
market? This decision usually must be
made before the product exists. First
resources must be allocated to develop
the product. Typically, there is a formal
corporate process with several gates
where project status, alternatives, and

options are reviewed before resources
are approved to proceed toward the
next gate. Many of the components ol
Figure 4 are involved in such corporate
decision processes. For a corporation
to be successful in the long run typi-
cally means more ideas and projects
are initiated and proceed through early
gates than the number of products
that proceed through the whole cycle
and eventually reach the market. This
situation is good for the corporation
and society overall, and industrial
R&D needs many creative ideas that
don’t make it all the way through the
pipeline. As a result, one challenge is
to make sure people associated with
“failed” projects are not necessarily
viewed as failures, themselves, but as
important contributors to an overall
successful corporate process.

The goal of business decisionmaking
is not really knowledge, be it obtained
via the traditional scientific process or
by the newer processes discussed in
the paper; nor is the goal often ‘mod-
eling’ as [or some of the problems dis-
cussed. The goals are framed in the
context of decisions and policies the
corporation must make, but the pro-
cesses and activities resemble those
described in the article. Note, how-
ever, that the actual decision making
processes are far removed from that
of classical math/stat decision theory.
Shared infrastructure to support deci-
sionmaking has increased greatly in
magnitude and importance, which
suggests there need to be changes in
the way people work to develop and
maintain that infrastructure.

In relation to the authors six pieces
of their decisionmaking framework, we
see an additional component that often
comes into play for industrial R&D. This
is the notion of some person or small
aroup of people attempting to take a
truly holistic view of the whole process
and its results. This could be thought
of as an expansion of the authors’ sixth
piece, ‘inference (with associated uncer-
tainties),” which is a narrower notion
than what we want to convey. This cor-
porate role often is taken by executives,
from R&D or elsewhere, who under-
stand enough of the technology and
individual pieces but whose primary
role is to synthesize the components and
place them in the context of corporate
options and decisions.

[n summary, we thank the authors
for laying out components of the cur-
rent scientific process relative to their
own environment and experiences, and
for stimulating us (and, we hope, oth-
ers) to think about how these relate to
our own experiences in today’s techno-
logical environments. (&
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Comment

Alan F. Karr, National Institute
of Statistical Sciences, Research
Triangle Park, North Carolina

The authors (whom | abbreviate as
KWW) formulate an interesting and
important question: How is science as
it is traditionally thought of changed by a
technological context for the problems:
Based on their experiences at the Los
Alamos National Laboratory (LANL],
they identity three key factors: com-
plexity, new forms of information—spe-
cifically; output of computer models and
expert opinion, and the need to attach
uncertainties to predictions. It seems to
me that all of this is on target. Moreover,
the point that “the overall problem/goal
is ‘decisionmaking and not modeling” is
equally on target, especially at LANL.
However, to me, as stimulating as this
paper is, it leaves unanswered three
other—and equally important—ques-
tions: Has science really changed in
a revolutionary way? Does the LANL
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experience generalize? What are the real
implications for statistics?

[ attempt to answer these questions,
but first must state what should be obvi-
ous: | may have less insight into real
science than KWW and my opinions
may be uninformed, malformed, or just
stupid. Read on at your own risk!

Some Answers?

No one can deny that issues of scale,
resources (financial, human, and data),
and collaboration drive modern sci-
ence, independently of technological
drivers. But is this anything other than
‘natural’ evolution?

Figure 1 of the paper is, I think,
an oversimplification that conjures
up a romanticized vision of the “lone
scientist,” toiling for years to make a
breakthrough. Tn fact, there has been
feedback in the process for hundreds
of years. For example, Kepler's laws of
planetary motion (early 1600s) were
arguably a data-driven attempt to
explain inconsistencies of astronomical
observations with models of circular
planetary orbits. As well, other tower-
ing scientific achievements (Einstein’s
theory of relativity and work on the
photoelectric effect, Maxwell's equa-
tions, Watson and Crick’s discovery ol
the structure of DNA) seem to fit this
figure. Indeed, Thomas Kuhn's theory
of scientific revolutions posits accumu-
lating divergence between observation
data and extant theory as the principal
stimulus for new theory.

How Much Has Science
Changed?

Is technology a new driver of science?
This question is, | think, a bit more
subtle, but ultimately that the process
is one of evolution. The references
I cite reveal the nature of my scien-
tific reading, but the development
ol clocks (early 1700s) as a tool for
measuring longitude seems to be tech-
nology-driven science. Other needs
[or better measuring devices include
telescopes, whose development has
stimulated science from antiquity to
the present.

Is expert opinion new? Of course
not. Arguably, expert opinion is what
distinguishes scientists from others. Is
its role in designing experiments new?
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No. What may be new, however, is
viewing expert opinion as data.

So are there, in Kuhn's metaphor,
paradigm changes?® From my National
Institute of Statistical Sciences (NISS)
perspective, there may be one: the
supplementation—verging in some
contexts on supplantation—of physical
experiments by computer models.

Does the LANL Experience
Generalize?

For one person to answer this ques-
tion is absurd. From my perspective
of nearly 15 vears at NISS and a lot
of collaboration before that, my own
answer is the ‘wimp out one—partially.
Research at NISS has been driven
principally by policy and technology.
Less often, but by no means rarely,
computer models have been central.
In these senses, the LANL experience
carries over to NISS.

At NISS, asoften as at LANL, scale
and complexity of data are ubiquitous.
Not surprisingly, at least after the [act,
the value of simple and scalable tools,
including visualizations and explor-
atory data analyses (EDA), has been
immense. 'To illustrate, a study con-
ducted a couple of years ago for a major
automobile manufacturer of why some
vehicles sell more rapidly than others,
while initially conceived as a test bed
for sophisticated data mining tools,
yielded useful conclusions only when
visualizations and regressions were
employed. I don't detect this aspect
in KWW. Nor, although it is not fair to
expect one paper to cover everything,
do KWW seem to address the need
lo create new abstractions as part of
the scientific process. Examples of
this that have arisen at NISS include
abstractions for data confidentiality,
disclosure risk, data quality, and servers
that disseminate analyses of confiden-
tial data. Collaboration has, of course,
always been central at NISS and at
many other organizations.

Closing a Loop

The third question T pose is the one I
wish most that KWW had said mare
about. Based on my NISS experience, |
think—regardless of whether changes
to science are revo}utionary or evolu-
tionary—there is one paradigm shift

that impacts statistics directly and dra-
matically. That shift is in the scope and
nature of what we regard as data. At
some point in the past (just when may
be harder to pin down), data were obser-
vational, whether generated by tradi-
tional ‘measurements’ or survey-like
mechanisms. 'Today, data also include
expert opinion, computer model output
(as in KWW), text, images, video, audio,
and physical artifacts (some DNA data-
bases). Some data (datastreams) are
transitory and must be used or lost.
Some data age (even fingerprints
change). Many databases are, inher-
ently or because of scale, relational. The
model of data as a flat file of cases x
attributes often is inapplicable.

The implication is clear and in
some ways dire: statistics—and, more
important, statisticians—must cither
change or risk becoming marginal-
ized. Many statistical organizations
have kept pace at some level with these
changes, while others have not. I think
LANL is among those coping, which
is one reason the insights of KWW
are so valuable. Possibly immodestly, 1
believe NISS is another. So, of course,
have many individual statisticians kept
pace. But, consistent with the issues
of scale, complexity and collaboration
articulated so compellingly by KWW,
I believe strongly that the neced for
collaboration must be addressed at the
organizational level. Sadly, organized
response also may be a paradigm shift
for statistics. It would not be so for
many other fields.

The corollary implication, which has
clearlyimpacted both LANL and NISS,
is that collaboration between statistical
and other scientists is no longer just a
good thing, but rather the only thing.
And we need to be realistic. Extreme
cases (we all have scen them) notwith-
standing, it is probable that most sci-
entists and engineers know more about
statistics than statisticians know about
science and engineering. (If you're my
age and think you know physics, try
reading Greene (2004)!) Sometimes,
as KWW and T know, you have to be
pushy to create collaborations. But, as
a profession, we need to do it

Finally, I think it is essential that we
reach statistical scientists at an early
enough stage in their careers—ideally
as students or postdocs—to make a
difference. And we need to reward,
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not punish, those who take the risk ot
collaborating. (&
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Comment

Vijay Nair, Departments of
Statistics and Industrial &
Operations Engineering,
University of Michigan, Ann Arbor

Statistical concepts and methods play
a central role in the Scientilic Method,
so it is tempting for us to embrace it as
the method or as the only legitimate
method for “doing science,” according
to Percy W. Bridgman, author of Reflec-
tions of a Physicist. However, il doing
<cience means learning, discovering,
and advancing knowledge, Bridgman
arcues there are as many scientific
methods as there are individual scien-
vists " Tn fact, “Scientific method is what
working scientists do, not what other
people or even they themselves may
sav about it. No working scientist, when

he plans an experiment in the labora-

tory, asks himself whether he is being
properly scientific, nor is he interested
in whatever method he may be using as
method. When the scientist ventures to
criticize the work of his fellow scientist,
as is not uncommon, he does not base
his criticism on such glittering gener-
alities as failure to follow the ‘scientific
method,” but his criticism is specitic,
based on some feature characteristic of
the particular situation.”

Now, one can criticize these “other
approaches as being “unscientitic,” but
science is littered with examples of
great discoveries that are due more
to chance than to any systematic
approach. A relatively recent example
is the discovery that resulted in the
Nobel Prize in Physics for Arnold Pen-
zias and Robert Wilson in 1978. In the
early 1960s, Penzias and Wilson were
conducting radio astronomy experi-
ments at Bell Labs when they found
there was a constant low-level noise
that was disrupting their reception.
This was an annoyance and they tried
everything they could think of to get
rid of the noise in order to make the
“right” observations for their experi-
ment. Apparently, they even kicked
out the pigeons living in the antenna
and swept out the droppings to see il
it made a difference! Finally, someonc
suggested they contact Robert Dickey,
a2 Princeton researcher working on
the theory of the “big bang.” He was
the one who made the connection
to the residual background radiation
from the explosion. The article waw.
bell-labs.com/userfapenzias/nobel. html
notes, “Like many of sciences great-
est discoveries, the one that earned
Arno Penzias his Nobel Prize was an
event of pure serendipity.” There arc
numerous other examples of the role
of chance in major breakthroughs (see
Discovery, Chance, and the Scientitic
Method, www.accessexcellence.org/AE/
AEC/CClchance.html).

Hypothesis testing and confirma-
tory statistical inference are critical
parts of the framework for the scientific
method in Figure 1. However, explor-
atory data analysis is just as important
in learning and discovery. Despite John
Tukey's visionary paper, “Future of Data
Analysis,” written more than 40 years
ago, exploratory data analysis did not
become a legitimate field of scientific
endeavor until very recently—when it

was rediscovered and popularized by
computer scientists under the name
of “data mining.

The area of data mining has emerged
from the need to find interesting pat-
terns and structures in very large data-
sets. These analyses are exploratory in
nature: more often than not, there is
no formal hypothesis that is tested or
[ollowed up. The data are not collected
with the goal of solving a specitic prob-
lem or veritying a hypothesis in mind;
rather, the data are collected because
they can be! Learning and discovery
in this situation come after the fact,
not preplanned as suggested in Fig-
ure 1. Of course, it is easy to dismiss
this as an “unscientific process.” But,
just as chance, it plays a major role
in discovery in scientific, business,
and engincering investigations. One
also could claim that any interesting
findings need to be followed up with
the formal process in Figure 1 in order
to confirm the conclusions. Even in
cases where this is done, the process
in Figure 1 is used rarely. See, lor
example, the extensive literature on
machine learning and the use of train-
ing versus test data, crossvalidation,
and other techniques.

The framework for the scientitic
method also suggests that the use ol
experimentation is the only reasonable
way to draw scientific conclusions.
While there are dangers associated
with making inferences from obser-
vational data, causal inference has
by now developed into a major [ield,
especially in the social and behavioral
scicnces. This has been by necessity,
as observational data are often the only
source of information in these lields.

As an aside, while experimentation is
one of the kev modules in Figure 1, sci-
entists in the physical sciences often do
not take a “scientilic approach” in con-
ducting experiments. Most experiments
are still done one-factor-at-a-time, and
long-established statistical (scientific)
principles and techniques—such as
fractional lactorial designs—have yet
to take a strong foothold.

We are living in an information
age driven by data. Huge amounts
of data are collected routinely in all
walks of life, ranging from business
and engineering to physical and bio-
logical sciences. Much of the data are
observational in nature and not from
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formal experiments, even in traditional
physical sciences such as astronomy.
The data are used to address many
goals, including prediction, classifica-
tion, model selection, system identifi-
cation, system optimization, and so on.
Not all of these fit into the formulation
in Figure 1.

Keller-MeNulty, Wilson, and Wil-
son discuss the impact of technology
on the traditional scientific method and
conclude that “the scientific method
may still be firm beneath our feet, but
our understanding of how it functions
should be as dynamic as our ongoing
search for understanding in the uni-
verse,” One could just as well argue that
the framework is too limited in scope
and needs to be abandoned in favor of
a new one that can accommodate the
broad spectrum of issues that arise in
the context of learning and discovery in
modern scientific investigations. 0
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Comment

John Stufken, Department of
Statistics, University of Georgia

The authors provide a thought-provok-
ing article on the relationship between
technology and the scientific process,
with an emphasis on science that is
closely tied to decisionmaking. While,
with or without the connection to deci-
sion making, any attempt to represent
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the scientific process in a chart must
inevitably be based on a generic, sim-
plified version of the process, it can
nevertheless be very useful in helping
to understand the increased complex-
ity of the entire process and, hopefully,
in providing guidance for the develop-
ment of new programs for the training
of future scientists.

‘Technological development has long
had a major impact on many aspects of
our lives, but perhaps never more than
in recent years due to the more rapid
innovations and improvements. This is
visible all around us and offers countless
opportunities. It also makes our lives
vastly more complicated at times.

The impact of technological advances
on science is just as dramatic. New tech-
nology has enabled the collection of
massive amounts of data, at different
scales (both smaller and larger) than
ever before, and from processes that
could previously not even be observed.
Naturally, the availability of all this addi-
tional information, be it in the form of
more readily or instantaneously available
data or in the form of data for more
complex processes, has led to deeper
and more complex scientific questions
that could not be entertained before.
Whether these questions are in support
of a decisionmaking process or simply
part of a discovery process, the result
has been that the scientific process has
become far more complicated, often
requiring multidisciplinary collabora-
tions to make any headway.

While one can argue about some of
the details on how this new (and evolv-
ing) scientific process is best described
or depicted, of more interest for the
statistics community is how statisti-
cians fare in this environment and what
must be done to train students to suc-
ceed in it. It stands to argue that we
have our work cut out for us.

Because statistics is the science of
collecting and analyzing data, and of
developing and evaluating methods to
do so, there are tremendous opportu-
nities for the discipline in this tech-
nology-driven and data-rich science
environment. There are, however, for-
midable challenges. Clearly, we must
work with other scientists to understand
their problems and have an impact on
the solutions. Developing such collabo-
rations can be challenging, time con-
suming, and frustrating. There are also

new challenges within the discipline.
Even when massive amounts of data are
available, it remains critical to ensure
that data are collected wisely, which
can require the development of new
methods for designing experiments.
Making sense of data also requires the
development of new methodologies
for data analysis or exploration, often
computationally intensive.

These opportunities and challenges
for statistics are not new. In his ASA
Presidential Address, Kettenring (1997)
noted that many opportunities and chal-
lenges arc along the same lines as those
we face today, while also pointing out
how ill positioned we are to meet the
challenges and take advantage of the
opportunities. Others have spoken and
written on these issues before and since,
and it would be interesting to see a care-
ful study on the progress we have made
during the last decade. Despite inciden-
tal success stories, we are arguably still
struggling with many of the same issues
as nearly 10 years ago. Lindsay, Ketten-
ring, and Siegmund remind us again
that there are tremendous challenges
for the discipline and that, despite the
plethora of opportunities, success will
not come easy. An‘mng others, they con-
clude that we need to do a better job in
terms ol telling other scientists about
the unique capabilities of our discipline;
find ways to be included more often
as equal partners in multidisciplinary,
collaborative research teams; develop
new training programs for our students
at all levels so they are well-equipped
to make significant contributions in the
scientific process; and continue to work
on including and improving statistics
education at the elementary and high-
school levels.

These are indeed formidable chal-
lenges. A good understanding of the
scientific process is important to suc-
ceed in meeting them. This article
makes a nice contribution in furthering
that understanding. [
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