
Object-Based Programming in Fortran 90

Mark G. Gray1 Randy M. Roberts2

April 15, 1997

1Mark G. Gray (gray@lanl.gov) is a member of the Radiation Transport Team

in the Scienti�c Computing Group at Los Alamos National Laboratory
2Randy M. Roberts (rsqrd@lanl.gov) is a member of the Radiation Transport

Team in the Scienti�c Computing Group at Los Alamos National Laboratory

Gray and Roberts: Object-Based Programming in Fortran 90 1

1 Introduction

We are object-oriented enthusiasts. We delight in analyzing our computer

modeling problems with the tools of composition and classi�cation that

scholars have used since the time of Aristotle. We relish designing solutions

to these problems using the concepts and entities of the problem domain

instead of being restricted to the concepts and entities of the computer lan-

guage. Finally, we enjoy implementing our designs in languages that fully

support our object-oriented analysis and design.

Our object-oriented language of choice is C++. We �nd its unity of design,

reasonable implementation of features, and concerns for e�ciency perfect

for scienti�c programming. All of this is as its creator intended: Strous-

trup clearly identi�es these features as his design goals[1] and we believe he

achieved them.

Unfortunately, we aren't always a�orded the luxury of using an object-

oriented language. Availability on a given platform, interfacing require-

ments, and performance prejudices sometimes restrict the languages we are

allowed to use.

Fortunately, object-oriented analysis and design can be fruitfully applied

to problems even when their ultimate implementation is in a non-object-

oriented language. In fact, if a language supports user-de�ned types, then an

object-oriented design can be implemented in it in an object-based fashion.

We have developed strategies for doing object-based programming in

Fortran 90. We are certainly not the �rst to do this. Meyer[2] and Rumbaugh[3]

both devote a chapter in their books to object-based programming in C, and

Fortran 77; the latter provides the outline we will follow. Norton[4] pro-

vides a web site1 of interesting object-based Fortran 90 examples. We o�er

our techniques here in the hopes of helping fellow object-oriented enthusiasts

cope with implementation in a popular non-object-oriented language, and

in the hopes of clarifying just what object-oriented programming is for those

who may know Fortran 90 and wonder what the object-oriented hoopla is

all about2.

1http://www.cs.rpi.edu/~nortonc/oof90.html
2Throughout this paper we will use several implicitly de�ned Fortran 90 and object-

oriented terms. For explicit de�nitions of these terms consult Brainard[5] and Booch[6].

Gray and Roberts: Object-Based Programming in Fortran 90 2

2 Object-Oriented and Object-Based Programming

Rumbaugh de�nes object-oriented programming as programming in terms

of a collection of discrete objects that incorporate both data and behavior[3].

In order to be object-oriented a language must support these four features:

� Identity | the quantization of data in discrete, distinguishable entities

called objects

� Classi�cation | the grouping of objects with the same structure and

behavior into classes

� Polymorphism| the di�erentiation of behavior of the same operation

on di�erent classes

� Inheritance | the sharing of structure and behavior among classes in

a hierarchical relationship

Modern languages that provide user-de�ned types can provide identity

and classi�cation, and some even support polymorphism. However without

inheritance these languages are not object-oriented. Cardelli and Wegner

identify using user-de�ned types for identity and classi�cation without in-

heritance as object-based programming[7]. Since Fortran 90 lacks inheri-

tance it is not an object-oriented language; however, its user-de�ned types

permit its use as an object-based language.

In the next section we show the analysis and design of a stopwatch class.

In Section 4 we illustrate the steps necessary to implement the stopwatch

class in an object-based fashion in Fortran 90. In Section 5 we revisit the

analysis and design and look for code improvements. Finally we comment

on this approach.

3 Analysis and Design

We wish to develop a code timing utility. It should record the total execution

time and time spent in various sections of code. The physical object we want

to model is the modern electronic stopwatch, which records total and split

times.

We'd like the stopwatch to be used like this:

call split(s, "bar") ! turn "bar" split on

call bar() ! execute bar subroutine

call split(s, "bar") ! turn "bar" split off

Gray and Roberts: Object-Based Programming in Fortran 90 3

call split(s, "foo") ! turn "foo" split on

call foo() ! execute foo subroutine

call split(s, "foo") ! turn "foo" split off

call report(s, 6) ! report total and split times

and produce output like this:

TIMER STATISTICS (sec)

0----1----2----3----4----5----6----7----8----9----%

bar 0.152 :******************

foo 0.252 :*******************************

0----1----2----3----4----5----6----7----8----9----%

total 0.404

First, we analyze this problem statement for the key abstractions that

will become the classes in our implementation. One obvious class is the

stopwatch itself, which �rst maps names to elapsed times and then reports

its associated data. Less obvious, but perhaps more fundamental, is the

basic timer, which records the elapsed time. The timer class does this by

consulting the system clock at the start and end of a timed interval. The

total and split times are recorded by individual timers.

Next, we design the associations and behaviors of these classes. The

stopwatch class is composed of several timers, each with an associated

name, so the stopwatch class must keep a set of character strings and

corresponding timers. The split method of the stopwatch class toggles

the state of the named timer. Finally the report method of the stopwatch

class reports total and split times by name. The timer class must keep track

of the elapsed time while it is on; its users need some means to turn it on

and o�. We call this method switch; if the timer is o� switch will turn it

on and vice versa. A timer must also report its elapsed time via a method

called report.

Finally, we implement our design in Fortran 90 in the following section.

4 Implementation

To use Fortran 90 as an object-based language we must map its features

into object-oriented concepts. Rumbaugh[3] identi�es the following steps

necessary to object-based programming:

1. Translate classes into structures

Gray and Roberts: Object-Based Programming in Fortran 90 4

2. Pass arguments to methods

3. Allocate storage for objects

4. Implement method resolution

5. Implement associations

6. Encapsulate internal details of classes

7. Implement inheritance in data structures

In this section we show how this can be done in Fortran 90, using the

stopwatch and timer classes as examples.

4.1 Translate classes into structures

Fortran 90 introduces structures under the rubric of derived types. Since

\derived" has a very di�erent meaning in object-oriented parlance, we will

use the more generic term \user-de�ned". Classes can be based on user-

de�ned types, with class attributes corresponding to the components of the

user-de�ned type. Creating a variable of the user-de�ned type corresponds

to creating an object of a particular class.

The stopwatch class is based on the stopwatch user-de�ned type:

integer, parameter, private :: mnl = 10

type, public :: stopwatch

private

integer :: max_splits

integer :: free

character(len = mnl), pointer, dimension(:) :: name

type(timer), pointer, dimension(:) :: split

end type stopwatch

where the timer class is based on the timer user-de�ned type:

type, public :: timer

private

integer :: time

logical :: on

end type timer

Gray and Roberts: Object-Based Programming in Fortran 90 5

Each timer has an integer::time3 that records its elapsed time, and

a logical::on
ag which indicates whether it is on. A stopwatch consists

of an array of character strings, called name, and timers, called split,

with integers max splits and free for the maximum and actual size of

the arrays, respectively.

By placing the attributes of a stopwatch or timer together in a user-

de�ned type we have achieved the following desirable programming objec-

tives:

Abstraction | users needing timing informationdeal with one stopwatch

variable instead of arrays of times and names. If the user needs sev-

eral stopwatches, he simply creates several distinct variables of type

stopwatch.

Type safety | compilers can check that stopwatch variables are used as

stopwatches in procedures.

Encapsulation | implementors can easily create or change procedures

that use stopwatches since their components are grouped together.

Variables of the user-de�ned stopwatch and timer type have state and

identity, but lack any intrinsic behavior necessary for object-hood. We add

behavior by adding methods to obtain genuine objects.

4.2 Pass arguments to methods

Our Fortran 90 user-de�ned types are given behavior by adding methods:

subroutines and functions which operate on a variable of the user-de�ned

type passed as the �rst parameter4. We use the naming conventions of

prepending the class name and underscore to the method name to further

associate it with the class, and of naming the corresponding user-de�ned

type parameter self, in keeping with the convention of some well known

object-oriented languages5.

The stopwatch user-de�ned type becomes a stopwatch class by adding

the following methods:

subroutine stopwatch_construct(self)

3computed from the Fortran 90 intrinsic SYSTEM CLOCK, which returns integersCOUNT,

COUNT RATE, and COUNT MAX based on the system clock
4Fortran 90 passes arguments by reference; large user-de�ned types can be used as

parameters without concern over copy overhead.
5C++ uses this instead of self.

Gray and Roberts: Object-Based Programming in Fortran 90 6

subroutine stopwatch_construct_1(self, n)

subroutine stopwatch_split(self, name)

function stopwatch_resolution()

subroutine stopwatch_report(self, u)

subroutine stopwatch_destruct(self)

The stopwatch construct and stopwatch construct 1 subroutines pre-

pare a stopwatch variable by allocating its name and timer arrays and ini-

tializing that data. The stopwatch destruct subroutine deallocates these

arrays. Once de�ned and initialized, the stopwatch split routine toggles a

named split. The stopwatch resolution function is somewhat di�erent

from the others; it is a class method instead of an object method. A class

method a�ects the behavior of the entire class; it takes no self parameter

and does not rely on the existence of a class variable to perform its job.

The stopwatch resolution returns the resolution of the stopwatch class,

which is data common to all stopwatch objects. The stopwatch report

subroutine reports the times recorded by the split array to logical unit u.

The timer user-de�ned type becomes a timer class by adding the fol-

lowing methods:

subroutine timer_construct(self)

subroutine timer_switch(self)

function timer_is_on(self)

function timer_time(self)

function timer_resolution()

subroutine timer_destruct(self)

The timer construct subroutine prepares a timer variable by initial-

izing its data. The timer destruct subroutine is not really needed here

since no deallocation is necessary, but is included in case a change in the

implementation of timer required it. Once de�ned and initialized, the

timer switch routine toggles a timer. The timer is on function returns

the timer's state, and the timer time function returns a timer's elapsed

time. The timer resolution function is another class method which re-

turns the resolution of a timer.

The behavior given to the stopwatch and timer user-de�ned types by

these methods make them true classes; variables of their types are true

objects.

By adding methods to the user-de�ned types, we have achieved the fol-

lowing desirable programming objectives:

Gray and Roberts: Object-Based Programming in Fortran 90 7

Encapsulation | users of the timer class need know nothing about its

user-de�ned type's components, nor of its procedure's implementation

in order to use it. Similarly the developer of the timer class is free

to change its internal attributes and method coding as long as he

maintains the promised behavior of the class.

The timer class underwent several major changes during the course of its

development; because of this encapsulation, its user (the stopwatch class)

remained unchanged. The user is freed from having to worry about how the

class works, and the programmer is freed from having to worry about how

the users uses it.

4.3 Allocate storage for objects

Fortran 90 supports static allocation (global variables), automatic allo-

cation (local variables), and heap allocation (using the allocate keyword).

Unfortunately Fortran 90 does not automatically provide for the allocation

(or deallocation) of user de�ned type components through the invocation of

user-de�ned constructors (or the destructor). We compensate for this by

giving each class at least one construct method, which is responsible for

any allocation and initialization, and one destruct method, which is re-

sponsible for any deallocation. The user is responsible for calling one of

the constructor subroutines to properly initialize the class, and calling the

destructor routine for deallocation after use. This detail is already taken

care of in most object-oriented languages, where construction is an auto-

matic part of variable declaration and destruction is an automatic part of

variables leaving scope.

The stopwatch \default" constructor, stopwatch construct, merely al-

locates space for 20 timers in split and 20 character strings in name via

a call to the stopwatch construct 1 constructor6:

subroutine stopwatch_construct(self)

implicit none

type(stopwatch), intent(inout) :: self

call stopwatch_construct_1(self, 20)

end subroutine stopwatch_construct

6We use the intent keyword to restrict the use of arguments to procedures. The

intent(in) argument attribute prohibits a procedure from modifying the argument's

content. This corresponds to the const keyword in C++.

Gray and Roberts: Object-Based Programming in Fortran 90 8

The stopwatch construct 1 subroutine allocates the speci�ed storage

in name and split and then calls each timer's construct subroutine to let

the timers initialize themselves:

subroutine stopwatch_construct_1(self, n)

implicit none

type(stopwatch), intent(inout) :: self

integer, intent(in) :: n

integer :: i

! make n names, splits

self%max_splits = n

allocate(self%name(0:self%max_splits))

allocate(self%split(0:self%max_splits))

! blank all names, zero all splits

do i = 0, self%max_splits

self%name(i) = " "

call construct(self%split(i))

end do

! turn total timer on

self%free = 0

self%name(0) = "total"

call switch(self%split(0))

end subroutine stopwatch_construct_1

The stopwatch destructor, stopwatch destruct, calls each timer's destruct

subroutine, and then deallocates the name and timer arrays:

subroutine stopwatch_destruct(self)

implicit none

type(stopwatch), intent(inout) :: self

integer :: i

! destroy each split

do i = 0, self%max_splits

Gray and Roberts: Object-Based Programming in Fortran 90 9

call destruct(self%split(i))

end do

! deallocate split and name arrays

deallocate(self%split)

deallocate(self%name)

self%max_splits = 0

self%free = 0

end subroutine stopwatch_destruct

By adding constructors and the destructor to our class, we have achieved

the following desirable programming objectives:

Encapsulation | users can ensure that stopwatches are constructed in

a valid state. Additionally, users can readily track resources since re-

source (de)allocation is localized within the class destructor and con-

structors.

Initialization is an important part of every language, and object initialization

by the constructor is especially important in an object approach.

4.4 Implement method resolution

Since the �rst argument to a class method is the self argument, the com-

piler can resolve a class method by its argument signature. By placing

these methods in interface blocks and giving them generic names we get

automatic method resolution, a form of polymorphism, which makes it

easier for the user to know what methods are available. For example, a

stopwatch object can be constructed with a default number of splits via

stopwatch construct, or with a speci�ed number of splits via stopwatch construct 1.

If we interface these constructors to the generic name construct all the

user need remember is how to construct a stopwatch (what parameters are

needed), not what the method is called.

For the stopwatch class these interfaces look like this:

interface construct

module procedure stopwatch_construct, stopwatch_construct_1

end interface

interface split

Gray and Roberts: Object-Based Programming in Fortran 90 10

module procedure stopwatch_split

end interface

interface report

module procedure stopwatch_report

end interface

interface destruct

module procedure stopwatch_destruct

end interface

Following this convention lets users of any object build, use, and destroy

it in a consistent fashion. For example, a stopwatch object named s is

declared and initialized as follows:

use stopwatch_class ! get stopwatch type definition and methods

type(stopwatch) :: s ! declare a stopwatch variable

call construct(s) ! initialize it

where the call to the generic routine construct resolves to a call to

the stopwatch construct routine because of its argument signature. The

stopwatch object s is uninitialized as follows:

call destruct(s) ! clean up s

By adding generic constructors and a generic destructor to our class, we

have achieved the following desirable programming objectives:

Polymorphism | users can construct and destruct stopwatchs and timers

in a consistent manner, i.e. by calling the construct and destruct

generic methods. Further, developers can use consistent method names

without concern about name con
icts between classes.

4.5 Implement associations

We implement associations via membership of types or pointers to types.

The timer class is part-of a stopwatch, and this composition is expressed

by the array of timers contained in the stopwatch user-de�ned type. In

Subsection 4.7 we will create a serial stopwatch class that is a kind-of

stopwatch, and this classi�cation is expressed by pointer containment.

By implementing associations, we have achieved the following desirable

programming objectives:

Gray and Roberts: Object-Based Programming in Fortran 90 11

Composition | developers can build new classes using existing classes as

parts.

Classi�cation | developers can build new classes by specializing from

existing classes.

4.6 Encapsulate internal details of classes

Although we have tied the state of a stopwatch to its behavior by requiring

that all stopwatchmethods have a stopwatch as their �rst type, we can fur-

ther enforce this relationship by using Fortran 90 modules. The Fortran

90 module can contain user-de�ned types, variables, and procedures, with

user speci�ed access.

The stopwatch class is encapsulated in the stopwatch class module:

module stopwatch_class

use timer_class

public :: construct, split, stopwatch_resolution, report, destruct

private :: stopwatch_construct, stopwatch_construct_1, &

stopwatch_destruct, stopwatch_split, stopwatch_report

! stopwatch type declaration goes here...

! interface statements go here...

contains

! method definitions go here...

end module stopwatch_class

Here users of the stopwatch class module can call the subroutines

construct, split, stopwatch resolution, report, and destruct because

they are all declared public; users have no access to any of the routines de-

clared private. Users can also create variables of type stopwatch because

the type is public, but cannot access any of the member data of that type

since it is all declared private.

By using Fortran 90 modules, we have achieved the following desirable

programming objectives:

Gray and Roberts: Object-Based Programming in Fortran 90 12

Encapsulation | developers can �nd all of the stopwatch class data

and behavior in one location, the stopwatch class module. Users

of stopwatch class need only use the stopwatch class module to

obtain all of the data and behavior of the class.

Data hiding | users do not need access to the internal workings of the

stopwatch class. Developers are free to use whatever attributes and

implementation they want, as long as they adhere to the expected

behavior of the class' public interface.

4.7 Implement \inheritance" in data structures

Inheritance is arguably the most important concept in science. Knowing

that an emu is a kind of bird tells me many things about its behavior, even

if I don't know anything else about emus. Similarly, inheritance is arguably

the most important concept in object-oriented programming. Knowing that

a symmetric matrix is a kind-of matrix tells me that I can expect of it

all of the behavior of a matrix, and that I can use it wherever I would use

a matrix, even if I don't know anything else about symmetric matrixes.

When the natural inheritance structure of the real world is built into an

object-oriented model, the important relationships known about the real

world carry over naturally into the model, providing developers and users

powerful tools for managing the complexity of the model.

Unfortunately Fortran 90 does not support inheritance. Fortunately

some of the features of inheritance can be faked in Fortran 90, giving some

of its bene�ts.

As a simple example of the use of inheritance, we will extend the stopwatch

class to support timing on a parallel platform. We want the interface of the

parallel stopwatch to be identical to that of the serial stopwatch and pre-

fer not to have to worry at all about which stopwatch we are using. Since

a parallel stopwatch is a kind-of stopwatch, and a serial stopwatch is

a kind-of stopwatch, what we want here is inheritance: The serial and

parallel versions are merely variations on the main theme of stopwatch.

To implement inheritance in the stopwatch class we �rst globally replace

\stopwatch" in the previous sections with \serial stopwatch". The previ-

ously de�ned stopwatch class becomes the serial stopwatch class, which

is a kind-of stopwatch. The parallel stopwatch is a kind-of stopwatch

too; it is similar to its serial sibling except for its construct and report

methods. The parallel stopwatch's construct method establishes the

communication pattern between the identical parallel stopwatch objects

Gray and Roberts: Object-Based Programming in Fortran 90 13

when they are constructed on each processor. The parallel stopwatch's

report method uses the communication pattern established by construct

to reduce the multiple parallel stopwatch object's data (via scatter-with-

operation, where the operation may be sum, average, maximum, minimum,

or some combination of these) for output.

Finally, we write the generic stopwatch class. Its type declaration is as

follows:

integer, parameter, private :: SERIAL = 0, &

PARALLEL = 1

type, public :: stopwatch

private

integer :: type

type(serial_stopwatch), pointer :: s

type(parallel_stopwatch), pointer :: p

end type stopwatch

The constructor for the stopwatch class allocates the appropriate type

based on whether the platform is parallel or not:

subroutine stopwatch_construct(self)

implicit none

type(stopwatch), intent(inout) :: self

self%type = platform() ! returns SERIAL or PARALLEL

select case(self%type)

case (SERIAL)

allocate(self%s) ! allocate serial_stopwatch

call construct(self%s) ! and initialize it

nullify(self%p)

case (PARALLEL)

self%type = PARALLEL

nullify(self%s)

allocate(self%p) ! allocate parallel_stopwatch

call construct(self%p) ! and initialize it

case default

! abort with error message

...

end select

end subroutine stopwatch_construct

Gray and Roberts: Object-Based Programming in Fortran 90 14

All the other stopwatch methods test the type component, and in-

voke the appropriate method for the allocated member. For example, the

stopwatch report method:

subroutine stopwatch_report(self)

implicit none

type(stopwatch), intent(in) :: self

select case (self%type)

case (SERIAL)

call report(self%s)

case (PARALLEL)

call report(self%p)

case default

! abort with an error message

...

end select

end subroutine stopwatch_report

calls either serial stopwatch report or parallel stopwatch report

depending on the kind-of stopwatch that the stopwatch object really is.

By using inheritance, we could have achieved the following desirable

programming objectives:

Classi�cation | in true object-oriented languages users can de�ne pro-

cedures that take stopwatch objects as arguments without concern

about which kind-of stopwatch is passed in. Objects of these child

classes can be used wherever the base class is expected! In our Fortran

90 implementation one cannot use an instance of serial stopwatch

wherever a stopwatch is required.

Polymorphism | in true object-oriented languages users can call the

report method on an instance of the stopwatch class and get the

correct behavior, based on the actual type. We have also achieved this

objective with our Fortran 90 implementation.

Extendibility | in true object-oriented languages one can add a new

child class without changing existing base class code. In our Fortran

90 implementationdevelopers of new classes derived from the stopwatch

Gray and Roberts: Object-Based Programming in Fortran 90 15

class must modify the base stopwatch class to accommodate the new

type.

Reuse | in true object-oriented languages the base class would contain

the code common to most of the classes within the kind-of hierarchy.

Particular child classes can override this common code. In our Fortran

90 implementationwe must duplicate identical code in each of the child

classes in order to allow future classes to override the default behavior.

E�ciency | in true object-oriented languages the compiler can use ef-

�cient pointer indirection for child class polymorphism, and in some

cases can optimize the indirections away. In our Fortran 90 imple-

mentation the compiler must deal with the case statement.

5 Iteration

One of the major advantages of the separation of interface (what the class

can do) and implementation (how it does it) in an object-oriented approach

is the ease with which design iteration can be done. Design improvements

that do not change the interface can be implemented without changing any

of the client code. Several of these changes can be made to improve the

stopwatch class.

First, the 10 character limit placed on names in the stopwatch class could

easily be removed by simply making name an array of character pointers

and allocating the exact length needed when a new name is seen. Along these

same lines name and split are �xed length arrays allocated by construct;

they could instead be implemented as linked lists which dynamically grow

as needed.

Next, the association between the name and split arrays follows a

well know pattern called a mapping or dictionary; in C++ the stopwatch

class could be instantiated from an STL map class[8]. We could base our

stopwatch class on a similarly generic map class in Fortran 90 (with the

help of a preprocessor like m4 to parameterize the map) and gain the possi-

bility of additional code reuse.

Finally, the parallel stopwatch class could be extended in a variety

of interesting ways. It currently collates and reports the minimum, aver-

age, and maximum time for each (parallel) named split; it could instead

present its output in more interesting ways. If beginning and end time ar-

rays were added to the timer class the parallel stopwatch class could

Gray and Roberts: Object-Based Programming in Fortran 90 16

report a complete execution time line for each of the processors. The last

change probably call for another child class in the stopwatch hierarchy.

6 Conclusion

Most of the advantages of object-oriented programming carry over to object-

based programming in Fortran 90, at the expense of extra work and disci-

pline. Are the bene�ts worth the expense?

We think so, for two reasons. First, even with the extra work, we �nd

the object-based approach puts us ahead at the end of the day. Once its

speci�cation is complete, each object becomes an independent programming

project; a large code naturally decomposes into smaller codes. Our ability

to rapidly get small codes running permits us to tackle large codes more

easily. Divide et imperia is the best way to manage complexity. The result-

ing implementations are cleaner, more robust, more extendible, and more

maintainable. Second, Fortran 90 is a language with a quirky, powerful,

non-orthogonal feature set that presents many pitfalls for the unsuspecting

programmer. To learn and use all of its features well require much work and

discipline regardless of the programming approach. Object-based program-

ming provides one framework for mastering these new features.

In practice we use all of the above techniques, except inheritance. We

�nd this pale imitation of true inheritance requires far too much work for

far too little bene�t. The ANSI Fortran 2000 committee has recognized

the value of true inheritance, and has included it in its draft standard.

Given the choice between using Fortran 90 or an object-oriented lan-

guage Rumbaugh[3] succinctly summarizes our views:

Use of an object-oriented or non-object-oriented language is not

a matter of functionality. By using the mappings described

above, you can translate any object-oriented construct into a

non-object-oriented language. Computational power is never an

issue because any universal language can compute anything com-

putable.

The real issue with languages is not power but expressiveness,

convenience, protection from errors, and maintainability. An

object-oriented language makes writing, maintaining, and ex-

tending programs easier and safer because it performs tasks

that the non-object-oriented language programmermust perform

manually.

Gray and Roberts: Object-Based Programming in Fortran 90 17

Rumbaugh then goes on to conclude:

Nevertheless, if you must use a non-object-oriented language, we

feel that an object-oriented design will simplify your task and

provide greater
exibility and extensibility if you are willing to

program in a disciplined manner.

Gray and Roberts: Object-Based Programming in Fortran 90 18

References

[1] Stroustrup B. The Design and Evolution of C++, Addison-Wesley, 1994

[2] Meyer B. Object-oriented Software Construction, Prentice-Hall, 1988

[3] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W.,

Object-Oriented Modeling and Design, Prentice-Hall, 1991

[4] Norton C., Szymanski B., and Decyk V., Object Oriented Parallel Com-

putation for Plasma Simulation, Comm. of ACM, 38(10) Oct 1995

[5] Brainerd W. S., Goldberg C. H., Adams J. C., Programmer's Guide to

Fortran 90, Springer Verlag, 1996

[6] Booch G. Object-Oriented Analysis and Design with Applications, 2nd

ed., Benjamin/Cummings, 1994

[7] Cardelli, L. and Wegner, P.On Understanding Types, Data Abstraction,

and Polymorphism. ACM Computing Surveys, 17(4), 471{522 1985

[8] Musser D. R., and Saini A., STL Tutorial and Reference Guide,

Addison-Wesley, 1996

