
Isosurface Extraction SIMD Architectures

Charles D. Hansen Paul Hinker

Advanced Computing Laboratory

Los Alamos National Laboratory

Los Alamos, New Mexico 87545

hansen@acl.lanl.gov hinker@acl.lanl.gov

Abstract
We describe our experiences with the investigation

of parallel methods for faster isosurface generation on
SIMD machines. A sequential version of a well known
isosurfacing algorithm is algorithmically enhanced for
a particular type of SIMD architecture. The SIMD
implementation takes full advantage of the inherent
data parallelism in the algorithm and experiments have
proven the implementation to excel in terms of scal-
ability. Having such a parallel tool, interactivity is
substantially enchanced. This provides an easy to use
isosurfacing back-end for scientists wishing to explore
3D scalar and vector �elds.

1 Introduction
One of the most commonmethods for the visualiza-

tion of 3D scalar �elds is through the reconstruction
of constant valued surfaces. These �elds can be scalar
components of vector �elds, a scalar computed from
the vector components, 3D medical imaging data, seis-
mic data or a plethora of other types of data[1, 2, 3].
Typically, this process treats the 3D scalar �eld as
gridded, possibly non-uniform, point samples and for
a given constant value, interpolates intersections be-
tween neighboring pairs of these samples. Connecting
these intersections will approximate a surface at some
given constant value.

Visualizing these isosurfaces interactively can give
the scientists a great deal of information about the
underlying structure contained within the �eld. In-
teractive viewing of these surfaces enhances the in-
terpretation of this structure. Unfortunately, the size
of these �elds generated from supercomputer models
is usually very large. This limits the interactiveness
of isosurfacing algorithms due to the amount of time
spent generating the surface of constant value. In this
paper, we describe our experiences with a SIMD solu-
tion to this problem.

Isosurface generation can be accelerated through
the use of table lookup[1]. Using this method, know
as Marching Cubes, the vertexes of each voxel1 are
compared against the contouring value. If they are
greater, a corresponding bit is set in a mask represent-
ing that voxel. This mask is used as an index into a
table describing which edges contain the intersection.

1
a voxel, volume element, is composed of 8 point samples

forming a cube

Although much faster than the brute-force method,
one still needs to interpolate the points of intersection
on the corresponding voxels. This interpolation is typ-
ically performed many times and therefore slows the
process down.

Researchers have looked at hierarchical data struc-
tures to aid in addressing this problem. One such
data structure is the octree[4]. Researchers have used
octrees in medical imaging to avoid transparent spa-
tial regions[5]. Others have addressed faster isosurface
generation through the use of octrees[3]. This method
hierarchically subdivides the 3D scalar �eld noting the
upper and lower values contained within the region.
This speeds the isosurface generation procedure by
only looking for voxels within pertinent regions.

The assumes the entire 3D �eld is resident on the
machine generating the isosurface. In medical imag-
ing, this assumption is valid since the scanning device
is not usually the same as the visualization device and
the data is usually visualized in a postprocessing set-
ting. The transfer, possibly through a network, of the
sampled data is necessary and typical in this scenario.
However, in scienti�c computing the simulation mod-
els are running on a high-performance computer and
the size of the �elds (up to 1G byte per time step)
impeds the transfer of data to the visualization de-
vice. This limits the interactiveness of isosurfacing
when monitoring running models. One approach to
this problem is to generate the isosurface on the same
machine which is running the model and either render
the geometry locally or send the geometry to a high
speed rendering device such as an SGI 380/VGX.

We have chosen to investigate parallel methods for
faster isosurface generation. This paper describes the
results we have obtained through experiments with a
SIMD parallel version of marching cubes [1]. We ex-
amine the SIMD method, why we chose the particular
algorithmic approach and present results obtained uti-
lizing a 64K CM-2. We then discuss the conclusions
of our �ndings.

2 A SIMD Approach
The architecture targeted for the SIMD version

of the marching cubes algorithm is a 64K processor
Thinking Machines Connection Machine (CM-2). Al-
though the marching cubes algorithmmaps well to the
hardware, some tuning was required to achieve the ex-
pected performance from the code.

Even though there are 65536 physical processors,
each processor can simulate many virtual processors
(vp). This allows us to assign a vp to each voxel(1)
and, in concept, concurrently determine which edges
are intersected by a constant valued isosurface. Using
this intersection information, it is possible to construct
the bit-mapped index into marching cubes tables and
construct the polygon(s) contained in each voxel.

The entire algorithm breaks into a few discrete
steps.

� Create bit-mapped index

� Interpolate edge intersections & gradients

� Construct triangles

� Calculate normals

2.1 A More Detailed Description of the
SIMD Algorithm

The �rst step is creating a bit-mapped index into
the marching cubes lookup tables. In our implementa-
tion of the algorithm, the data points of the volume are
located at the lower-left-forward corner of each voxel.
To complete the description of each voxel, we need
point samples (vp values) for the other seven corners
of the voxel. At this point, a choice must be made
between storing all eight point samples 'in-processor'
or communicating that information as needed. An ad-
ditional consideration is the fact that if corner infor-
mation is stored in-processor, then interpolated edge
and gradient information would also need to be stored
in-processor. The memory requirements between the
two methods di�er by a factor of almost 3 to 1 in favor
of doing the communications.

On the surface, doing communications seems to be
the correct way to go. There are additional considera-
tions, however. Because of the nature of the data sets
being dealt with, a 3 to 1 memory usage di�erence
is not really signi�cant. The CM-2 requires that any
axis be of integral power of two length. This means
that the next volume larger than 32x32x32 voxels is
a volume of 64x32x32 voxels. Even if the actual vol-
ume is 33x32x32 voxels in size so, chances are, if the
memory is insu�cient for the algorithm where every-
thing is stored in-processor, it will be insu�cient for
the communication intensive algorithm as well.

Also, even though all communications, in prac-
tice, is nearest neighbor communications (the fastest
type on the CM-2) the C-Star compiler is not op-
timized enough to recognize that fact. This means
that triangle construction is done using general (via
router) communications which is an order of magni-
tude slower. So, each vp communicates with its neigh-
bors and assigns values to an eight position parallel
array V[0:7] that describes the point sample values at
each of its eight vertices.

Determining the bit-mapped index for the table
lookups is straight forward since we have point sample
data for all eight vertices in-processor. The index itself
is constructed by simply setting the bits correspond-
ing to the vertices which are greater than or equal to
the value being surfaced.

Figure 1: cube numbered vertices and edges

Once the bit-mapped index is created, we calcu-
late the gradient information along the x, y and z axis
to use in our shading model when the time comes to
render our surface. The gradient can be linearly inter-
polated at the point of intersection. We estimate the
gradient vector at the surface of interest by �rst esti-
mating the gradient vectors at the cube vertices using
the operator :

rf(xi) = rf(xi; yj ; zk)

Next, we calculate edge intersections along the
three coordinate axes by linearly interpolating edge
intersections for all three coordinate axes. To han-
dle non-uniform grids, this interpolation will use voxel
coordinate information instead of assuming unit cube
voxel sizes. Gradient values at surface intersection
points are calculated in much the same way during
this step. This only entails a single interpolation for
each of the three intersections for each of the coordi-
nate axes. In the SIMD architecture, each vp knows
'where' in the compute space it resides. In other words
a vp can be, e�ectively, asked 'What is your X-Axis
position?'. This is accomplished with the pcoord()
(C-Star) function or the MY-NEWS-COORDINATE
(C-Paris) function.

Delta = IsoValue - V[0]

For (I = 0 : I 3 ; I++)

For (J = 0 : J 3 ; J++)

Edge[I][J] = pcoord(J);

Edge[0][0] = (Delta / (V[1] - V[0])) + pcoord(0)
:: X-Axis

Edge[1][1] = (Delta / (V[3] - V[0])) + pcoord(1)
:: Y-Axis

Edge[2][2] = (Delta / (V[4] - V[0])) + pcoord(2)
:: Z-Axis

Some of the edges calculated are not useful but be-
cause of the lock- step nature of the SIMD hardware,
all vp's must wait until the last vp is �nished. So,
the overhead of choosing and eliminating useless edge
calculations turns out being more expensive than just
doing the interpolation for every edge.

Now we have intersection and gradient information
for the twelve edges which make up each voxel. By
doing NEWS communication with neighboring voxels,
we pick up the nine edges interpolated by the neigh-
boring vp's.

It's necessary for each vp, that contains a portion
of the surface, to have access to the lookup table when
constructing polygons. There are two widely used
forms for this table. One form has a unique entry
for each possible value of the bit-mapped index (i.e.
256 entries). The other form reduces the table size by
applying rotations and symmetry to 14 base triangle
con�gurations[1].

We make use of a full sized lookup table because
the reduced table method divides any given index into
categories. It is either one of the 14 base cases or it
requires rotation, re
ection or both. The lock-step
nature of the CM-2 hardware makes this an expensive
proposition since all processors are given the same in-
struction whether they are active or not. Either vp's
doing base, rotation or re
ective construction are han-
dled while all other vp's sit idle. Using the full table
means that all indices fall into one category and, there-
fore, are handled all at once.

It would be prohibitively expensive to store the en-
tire lookup table in each vp's memory space. For ex-
ample, the lookup table requires 3328 bytes of stor-
age. Memory for each physical processor is divided
evenly between the vp's associated with that physical
processor. Each physical processor has 256K of mem-
ory. A vp ratio (the number of vp being emulated by
each physical processor) of 2 means that each vp has
128K of memory with which to work. Storing the en-
tire lookup table on each vp is not a problem when
working with small vp ratios (i.e. small volumes). A
medium sized volume of 128 x 128 x 128 requires a
vp ratio of 64. Storing the table on each vp means
that the lookup table would use 81.25processor mem-
ory (3328 bytes * 64 = 208K. It also means that even
though the CM-2 is equipped with 8 GB of RAM, we
could not surface a volume of greater than 1283 cells
because the memory required for the table alone would
be greater than 8 GB.

One solution would be to store the table on the
CM front-end machine as a scalar array and broad-
cast the table entries to the CM as needed during the
polygon construction stage of the algorithm. Unfortu-
nately, there are two penalties to having the table in
scalar form on the front-end. First, the communica-
tion time is signi�cant compared with the runtime of
the algorithm. Also, since the table is a scalar array,

PEs Volume Sz Indexing Edges Construct Normals

16K 32x32x32 4.2 6.6 41.4 9.4
16K 64x64x64 18.7 30.6 322.3 60.9
16K 128x128x128 98.8 196.7 2550.3 472.5 4
32K 32x32x32 2.8 4.1 25.6 5.5
32K 64x64x64 10.8 16.8 169.5 31.2
32K 128x128x128 55.0 102.8 1280.4 237.1 2
64K 64x64x64 6.5 9.9 87.8 16.5
64K 128x128x128 31.3 54.8 640.0 119.4 1
64K 256x256x256 175.5 375.2 5088.7 864.0 7

Table 1: Results of Runs on the CM-2 in milliseconds

it cannot be accessed by the CM hardware in a par-
allel manner. This means a large number of vp's are
idle during much of the polygon construction stage.
It's necessary to loop over all possible index values
(256) and activate the corresponding vp's to do their
polygon construction.

A more reasonable solution for the problem is using
the aref32 shared & aset32 shared instructions pro-
vided by the CM-2 hardware.

A CM-2 is made up of some large number of serial-
bit processors (4K, 8K, 16K, 32K, 64K) these pro-
cessors (along with routing hardware, Weitek
oat-
ing point math chips and memory) are grouped into
what are called Sprint Nodes. Each Sprint Node
has a Weitek math chip, 32 bit processors, routing
hardware and (in our CM-2) 32 M-bits of RAM. The
aref32 shared & aset32 shared instructions allow us to
use part of the RAM on the Sprint Node as a shared
memory accessible by any physical processor on the
Sprint Node and any virtual processor associated with
those physical processors. Storing the lookup table in
this manner requires a constant amount of memory
per physical processor (i.e. tablesize=32). This allows
us to store the full sized table in CM memory and
access it in a parallel manner.

The last step in the process is to calculate normals
for each triangle constructed. We have modi�ed the
lookup table so that all triangles are constructed in a
clockwise traversalmethod. This allows us to generate
normals quickly without having to determine proper
normal direction.

3 SIMD Results
The times given in the table 1 were gathered using

a Sun 4/490 front-end and the number of processing
elements (PEs) speci�ed in the �rst column. All times
given are in milliseconds. Each timing is the average of
three runs using di�erent isosurface values. Changing
the value to be surfaced had little e�ect on execution
time. This is as expected since the time spent in each
virtual processor (vp) remains constant regardless of
the number of polygons within its voxel.

A close look at the timings shows that doubling
the number of PEs reduces the time needed to gener-
ate the surface by roughly half while multiplying the
number of voxels in the volume by eight roughly in-
creases the execution time by that same amount. As
the vp ratio (number of virtual processors being emu-

lated by each physical processor) increases, e�ciency
is increased. This explains why the speedup (with
respect to vp ratio) seems to be slightly better than
linear. The speed up is slightly less than linear when
more PEs are applied to the same data set. This can
be explained using the same argument. Since the vp
ratio decreases when more PEs are applied to the same
data set, PE e�ciency su�ers since more PEs are idle
for more of the time.

Some readers may think the times shown in ref-
�g:simd are slower than would be expected. First,
the data sets we are using, from a CFD origin, con-
tain a large number of polygons. For example, the
128x128x128 volume generates over 155,000 triangles
per surface. The 256x256x256 volume over 1.24 mil-
lion triangles. The algorithm outlined here will gen-
erate on the order of 170,000 triangles per second.
This is close to the rendering limit of disjoint Goraud
shaded on the fastest commercially available hardware
(SGI VGX with MultiBu�er). Thus, within current
hardware limits, this is nearly optimal for interactive-
ness.

4 Conclusion and Future Work
As the above results show, the scalability of the

marching cubes isosurface extraction algorithm is
nearly optimal for the data parallel architecture of
the CM-2. With the size of the massive data sets
currently computed, this is an issue that is becom-
ing increasingly important. Our results are based on
isosurfacing without using spatially hierarchical data
structures. It is unclear whether such an approach
would improve performance of this particular imple-
mentation due to the lock step nature of the SIMD
architecture. This is clearly a direction for further re-
search. Another issue not addressed this spec�cally
addressed by this paper is the rendering of the gener-
ated polygons. As previoudly mentioned, one of the
motivations for generating the isosurface on the same
machine where the raw data is produced is to reduce
the required network bandwidth to interactive levels.
For a 256x256x256 volume of
oating point data, the
raw data requires 530Mbits per time step. Consid-
ering that dynamic simulations contain hundreds of
time-steps, this is obviously too much raw data to
transport in the typical visualization process. If 100K
polygons (triangles) are extracted, the data shipped
over the network is reduced to 28Mbits. While this is
a reduction of almost 19 times, it is still twice maxi-
mal ethernet bandwidth. However, we can utilize the
CMIO bus to VME adapter to accomplish the net-
work transport. Another solution would be to make
use of the HIPPI channel via a HIPPI-VME adapter.
If the polygon count increases an order of magnitude,
rendering the polygons on the CM-2 becomes the best
solution.

Our current area of focus is in attempting to some-
how reduce the number of triangles generated by this
code. One method would be the merging of coplanar
polygons. This met with resistance on several fronts
since part of the method is stubbornly serial in na-
ture (retransversal of merged polygons). Also, very
complex polygons are generated when many polygons

are merged (polygons with multiple holes, non-unique
segments, etc.) And �nally, there is a performance
penalty when trying to render complex polygons (as
opposed to triangles or quads) on z-bu�ered hardware
such as an SGI VGX.

In the paper, we have described a technique for the
implementation of isosurface extraction on a data
ow
SIMD architecture. We have shown that near linear
speedups, and in some cases superlinear speedups, are
possible on a real-world, well known algorithm.

5 Conclusions
As the above results demonstrate, the scalability of

isosurface extraction is much greater for the data par-
allel architectures such as the CM-2. With the size of
the massive data sets currently computed, this issue
becomes more important. Our results are based on
isosurfacing without using spatially hierarchical data
structures. As noted previously, these have been use-
ful to other research in obtaining speedups. With the
MIMD version, spatial decomposition might improve
the performance even further. This is clearly an area
of future research. Conversely with the SIMD version,
spatial decomposition would not improve the perfor-
mance since all processors execute the same instruc-
tion in a SIMD fashion. One issue that we have not
addressed in this paper is the rendering of the poly-
gons. On the SGI 380/VGX, it is clearly preferable to
utilize the graphics pipeline. However on the CM-2,
the delay in extracting the polygonal information from
the CM-2 memory might present problems. One so-
lution would be to render the polygons on the CM-2.
Another would be to utilize a CMIO-VME connection.
Still another would be to utilize the HIPPI channel via
a HIPPI-VME adapter.

In the paper, we have described a technique for
the implementation of isosurface extraction on both
MIMD and SIMD architecture. We have shown that
the speedup is nearly linear on the SIMD machine
while on the MIMD version, the speedup factor de-
creases once the processor count is over four. We have
shown that by attempting to maintain the cache hit
ratio on the MIMD architecture, greater performance
can be achieved.

Acknowledgements
This work was paritally funded by DOE High Per-

formance Computing Grant KC0701, LANL LDRD
91-Distributed-Visualiztion, LANL Computing Divi-
sion, and NSF STC

References
[1] W. Lorensen and H Cline. A high resolution

3d surface contruction algorithm. In Computer
Graphics, volume 21, pages 163{169, 1987.

[2] W. E. Johnson et. al. Distributed scienti�c video
movie-making. In Proceedings of Suprtcomputing
Conference 1988, pages 156{162, 1988.

[3] J. Wilhelms and A. Van Gelder. Octrees for faster
isosurface generation. In SIGGRAPH Workshop
on Volume Visualization, pages 129{147, 1990.

[4] D. Meagher. Geometric modeling using octree en-
coding. In Computer Graphics, volume 19, pages
129{147, 1982.

[5] Mark Levoy. E�cient ray tracing of volume data.
ACM Transactions of Computer Graphics, 9(3),
July 1990.

	Abstract
	1 Introduction
	2 A SIMD Approach
	2.1 A More Detailed Description of the SIMD Algorithm

	3 SIMD Results
	4 Conclusion and Future Work
	5 Conclusions
	Acknowledgements
	References

